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A LOCAL DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR
PARABOLIC SPDEs

Yunzhang Li1, Chi-Wang Shu2,* and Shanjian Tang1

Abstract. In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlinear and
possibly degenerate parabolic stochastic partial differential equations, which is a high-order numerical
scheme. It extends the discontinuous Galerkin (DG) method for purely hyperbolic equations to parabolic
equations and shares with the DG method its advantage and flexibility. We prove the 𝐿2-stability of
the numerical scheme for fully nonlinear equations. Optimal error estimates

(︀
𝒪
(︀
ℎ𝑘+1

)︀)︀
for smooth

solutions of semi-linear stochastic equations is shown if polynomials of degree 𝑘 are used. We use
an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-valued stochastic
ordinary differential equations derived from the spatial discretization. Numerical examples are given to
display the performance of the LDG method.
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1. Introduction

In this paper we present a local discontinuous Galerkin (LDG) method for nonlinear parabolic stochastic
partial differential equations (SPDEs) with a periodic boundary condition and a multiplicative noise of the
form: ⎧⎪⎨⎪⎩

d𝑢 = {[𝑎(·, 𝑥, 𝑡, 𝑢, 𝑢𝑥)𝑢𝑥]𝑥 + 𝜓(·, 𝑥, 𝑡, 𝑢, 𝑢𝑥)} d𝑡+ 𝑔(·, 𝑥, 𝑡, 𝑢, 𝑢𝑥) d𝑊𝑡,

(𝑥, 𝑡) ∈ [0, 2𝜋]× (0, 𝑇 ]; (1.1)
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [0, 2𝜋],

where the terminal time 𝑇 > 0 is a fixed real number, {𝑊𝑡, 0 ≤ 𝑡 ≤ 𝑇} is a standard one-dimensional Brownian
motion on a given probability space (Ω,ℱ ,P), {ℱ𝑡, 0 ≤ 𝑡 ≤ 𝑇} denotes its augmented natural filtration, and the
real scalar-valued functions 𝑎, 𝜓 and 𝑔 are all ℱ⊗ℬ([0, 2𝜋]× [0, 𝑇 ]×R2)-measurable. Notice that the assumption
of periodic boundary conditions is for simplicity of exposition only and is not essential: the method as well as
the analysis can be easily adapted for non-periodic boundary conditions. We make the following hypotheses:
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(H1) The initial condition 𝑢0 ∈ 𝐿2(0, 2𝜋).
(H2) The leading coefficient 𝑎 is locally Lipschitz continuous in the last two variables. There exist two nonneg-

ative constants 𝛼 and Λ such that
𝛼 ≤ 𝑎(𝜔, 𝑥, 𝑡, 𝑢, 𝑣) ≤ Λ

for any (𝜔, 𝑥, 𝑡, 𝑢, 𝑣) ∈ Ω× [0, 2𝜋]× [0, 𝑇 ]× R2.
(H3) There exist three positive constants 𝐵1, 𝐵2, and 𝐵3 such that

|𝜓(𝜔, 𝑥, 𝑡, 𝑢, 𝑣)− 𝜓(𝜔, 𝑥, 𝑡, 𝑢′, 𝑣′)| ≤ 𝐵1 (|𝑢− 𝑢′|+ |𝑣 − 𝑣′|)

and
|𝜓(𝜔, 𝑥, 𝑡, 𝑢, 𝑣)|2 ≤ 𝐵2

2

(︀
1 + |𝑢|2

)︀
+𝐵2

3 |𝑣|
2

for any (𝜔, 𝑥, 𝑡;𝑢, 𝑢′, 𝑣, 𝑣′) ∈ Ω× [0, 2𝜋]× [0, 𝑇 ]× R4.
(H4) There are four nonnegative constants 𝐶𝑖 with 𝑖 = 1, 2, 3, 4 such that

|𝑔(𝜔, 𝑥, 𝑡, 𝑢, 𝑣)− 𝑔(𝜔, 𝑥, 𝑡, 𝑢′, 𝑣′)| ≤ 𝐶1|𝑢− 𝑢′|+ 𝐶2|𝑣 − 𝑣′|

and
|𝑔(𝜔, 𝑥, 𝑡, 𝑢, 𝑣)|2 ≤ 𝐶2

3

(︀
1 + |𝑢|2

)︀
+ 𝐶2

4 |𝑣|
2

for any (𝜔, 𝑥, 𝑡;𝑢, 𝑢′, 𝑣, 𝑣′) ∈ Ω× [0, 2𝜋]× [0, 𝑇 ]× R4.

Various phenomena and applications (see [36, 39] and the references therein) with stochastic influence in
natural or artificial complex systems can be modeled by SPDEs (1.1), including stochastic quantization of the
free Euclidean quantum field, turbulence, population dynamics and genetics, neurophysiology, evolution of the
curve of interest rate, nonlinear filtering, movement by mean curvature in random environment, hydrodynamic
limit of particle systems, fluctuations of an interface on a wall, and pathwise stochastic control theory. In these
fundamental applications, several examples of canonical SPDEs arise, such as the Zakai equation, reflected
stochastic heat equation, stochastic reaction diffusion equations, stochastic Burgers equation, stochastic Navier–
Stokes equation, and stochastic porous media equation.

Concerning the theoretical study for nonlinear SPDEs with a multiplicative stochastic forcing term involving
a temporary white noise, Pardoux and Peng [37] proved existence and uniqueness of a classical solution by
establishing the connection with backward doubly stochastic differential equations (BDSDEs). Hofmanová [24]
obtained a regularity result for the strong solution with periodic boundary condition when all the coefficients are
sufficiently smooth. Recently, Du and Liu [18] gave a Schauder estimate for linear SPDEs, which can be suitably
generalized to nonlinear cases. In addition to these, there are also numerous research activities on nonlinear
SPDEs. See e.g. [3,15,20,43]. However, in most cases it is not available to have explicit solutions to the SPDEs,
and numerical solutions of SPDEs naturally receive a lot of attentions.

In recent years, numerous studies have been focused on advanced and efficient methods for SPDEs such as
finite difference methods [16,21,22,33,42,45], finite element methods [1,17,19,28,44,47], spectral methods [25,
31, 34, 35], and also some other types of numerical methods [7, 41]. Concerning discontinuous finite element
methods for SPDEs, Cao et al. [4,5] developed a discontinuous Galerkin (DG) method to the time-independent
elliptic SPDEs with additive noises. Li et al. [30] proposed a DG method for nonlinear stochastic hyperbolic
conservation laws, in which they investigated the stability for fully nonlinear equations and the error estimates
for semilinear equations. Pazner et al. [38] formulated an LDG scheme on the basis of fluctuation-dissipation
balance to approximate linear parabolic SPDEs driven by additive noises, which preserves a discrete fluctuation-
dissipation structure, but neither stability nor any error estimate is given. To the best of our knowledge, little
attention has been paid to the stability and error estimates of high-order approximate schemes for fully nonlinear
parabolic SPDEs with multiplicative noises.

The LDG method was introduced by Cockburn and Shu [12] as a generalization of the numerical scheme
proposed by Bassi and Rebay [2] for the compressible Navier–Stokes equations. This scheme was in turn an
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extension of the DG method developed by Cockburn et al. [9–11,13,14] for nonlinear hyperbolic systems. With
the help of the local Gauss–Radau projection, the 𝐿2-norm stability and optimal error estimates are obtained
for deterministic problems [6, 46], if the alternating numerical fluxes are used. In this paper, we shall consider
stochastic counterparts of these works and propose an LDG scheme for the nonlinear parabolic SPDEs (1.1).
Our numerical scheme shares the following advantages and flexibilities of the classical DG method: (1) it is easy
to design high order approximations, thus allowing for efficient 𝑝-adaptivity; (2) it is flexible on complicated
geometries, thus allowing for efficient ℎ-adaptivity; (3) it is local in data communications, thus allowing for
efficient parallel implementations.

It should be pointed out that our effective computational methods for SPDEs have new difficulties. A solution
of SPDEs, even when it exists, is not time-differentiable in nature, and is not bounded in general in the
path. These new features complicate our calculation and analysis. Using the similar techniques for stochastic
hyperbolic equations with DG methods in [30], we properly estimate the quadratic covariation process of the
approximating solution to obtain stability and optimal error estimates.

As an extension of the DG method, the LDG method can not only deal with nonlinear multiplicative noise
containing the unknown variable 𝑢 itself, but also nicely handle the case of its first order spatial derivative 𝑢𝑥

being involved in the stochastic diffusion term 𝑔, as long as the stochastic parabolicity 2𝛼 ≥ 𝐶2
4 is satisfied.

Though few studies are given on unique solvability and regularity of strong solutions to degenerate nonlinear
SPDEs, we can design the LDG scheme for the degenerate case 2𝛼 = 𝐶2

4 and prove its stability, which is
confirmed by numerical tests for degenerate SPDEs in Section 7. These numerical experiments further indicate
that our scheme also has optimal order of accuracy even in the degenerate case.

Our high-order approximation scheme can be more efficient for high-accuracy computation of the smooth
case, which is rather attractive in applications. However, for the discontinuous case, our scheme loses the high
order of accuracy and has spurious numerical oscillations near discontinuous region. In practice, it is worth
trying to use limiters to control oscillations for the discontinuous problems, which remain to be investigated in
the future. Our numerical algorithm and stability analysis are restricted within the one-dimensional spacial case,
but they can be generalized to higher spacial dimensions in a straightforward way. The optimal error estimate
will however be more involved in the multi-dimensional spacial case, especially on unstructured meshes, which
remains to be studied in the future.

The paper is organized as follows. In Section 2, we introduce notations, definitions and auxiliary results used
in the paper. In Section 3, we present the LDG method for nonlinear parabolic SPDEs (1.1), and study the
existence and uniqueness of the solution to the stochastic differential equations (SDEs) derived from the spatial
discretization. In Section 4, we investigate the 𝐿2-stability for the fully nonlinear stochastic equations. In section
5, we obtain the 𝐿2-norm optimal error estimates (𝒪(ℎ𝑘+1)) for semilinear stochastic equations. In Section 6,
we use a derivative-free order 1.5 scheme for matrix-valued SDEs as time discretization, to collaborate with
the semi-discrete LDG scheme. Finally the paper ends with a series of numerical experiments on some model
problems in Section 7, which confirm the analytical results.

2. Notations, definitions and auxiliary results

In this section, we introduce notations, definitions, and some auxiliary results.

2.1. Notations

We denote the mesh by 𝐼𝑗 =
[︁
𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2

]︁
, for 𝑗 = 1, . . . , 𝑁 . The nodes are denoted by {𝑥𝑗+ 1

2
, 𝑗 =

0, 1, . . . , 𝑁} with 𝑥 1
2

= 0 and 𝑥𝑁+ 1
2

= 2𝜋. The mesh size is denoted by ℎ𝑗 = 𝑥𝑗+ 1
2
−𝑥𝑗− 1

2
, with ℎ = max1≤𝑗≤𝑁 ℎ𝑗

being the maximum mesh size. We assume that the mesh is regular, namely the ratio between the maximum
and the minimum mesh sizes stays bounded during mesh refinements. We define the piecewise polynomial space
𝑉ℎ as the space of polynomials of the degree up to 𝑘 in each cell 𝐼𝑗 , i.e.

𝑉ℎ =
{︁
𝑣
⃒⃒⃒
𝑣 ∈ 𝑃 𝑘(𝐼𝑗) for 𝑥 ∈ 𝐼𝑗 , 𝑗 = 1, . . . , 𝑁

}︁
.
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Note that functions in 𝑉ℎ might have discontinuities on an element interface.
We consider the Sobolev space ‖ · ‖𝐻𝑚,𝑝 with periodic boundary condition,

𝐻𝑚,𝑝 :=

{︃
𝑢 : [0, 2𝜋] → R

⃒⃒⃒⃒
⃒ ‖𝑢‖𝐻𝑚,𝑝 =

[︃∫︁ 2𝜋

0

(︃
|𝑢(𝑥)|𝑝 +

𝑚∑︁
𝑙=1

⃒⃒⃒⃒
d𝑙

d𝑥𝑙
𝑢(𝑥)

⃒⃒⃒⃒𝑝)︃
d𝑥

]︃ 1
𝑝

<∞,

𝑢(0) = 𝑢(2𝜋),
d𝑙

d𝑥𝑙
𝑢(0) =

d𝑙

d𝑥𝑙
𝑢(2𝜋), 𝑙 = 1, . . . ,𝑚− 1

}︃
.

For simplicity, we write ‖ · ‖𝐻𝑚 for ‖ · ‖𝐻𝑚,2 , and ‖ · ‖ for the 𝐿2(0, 2𝜋) norm. We denote by 𝒮2(Ω× [0, 𝑇 ];𝐿2),
the space of all adapted strongly continuous processes 𝜑 : Ω× [0, 𝑇 ] −→ 𝐿2(0, 2𝜋) such that

‖𝜑‖𝒮2(Ω×[0,𝑇 ];𝐿2) :=
(︂

E
[︂

sup
0≤𝑡≤𝑇

‖𝜑(𝑡)‖2
]︂)︂ 1

2

<∞.

An element of R𝑛×𝑑 is a 𝑛× 𝑑 matrix, and its Euclidean norm is given by |𝑦| :=
√︀

trace (𝑦𝑦*) for 𝑦 ∈ R𝑛×𝑑.
The solution of the numerical scheme is denoted by 𝑢ℎ, and belongs to the finite element space 𝑉ℎ. We denote

by 𝑢+
𝑗+ 1

2
and 𝑢−

𝑗+ 1
2

the right and left limits of the function 𝑢 at 𝑥𝑗+ 1
2
, respectively.

By 𝐶 > 0, we denote a generic constant, which in particular does not depend on the discretization width ℎ
and possibly changes from line to line. Since the Itô integral is not defined in a pathwise sense, the argument 𝜔
of the integrand as a stochastic process will be omitted in the rest of this paper if there is no danger of confusion.

2.2. Projection properties

We consider the standard 𝐿2-projection (denoted by 𝒫), and the local Gauss–Radau projections ℛ and 𝒬
into space 𝑉ℎ. For each 𝑗, the projections satisfy that∫︁

𝐼𝑗

[𝒫𝑢(𝑥)− 𝑢(𝑥)] 𝑣(𝑥) d𝑥 = 0, ∀𝑣 ∈ 𝑃 𝑘(𝐼𝑗),

∫︁
𝐼𝑗

[ℛ𝑢(𝑥)− 𝑢(𝑥)] 𝑣(𝑥) d𝑥 = 0, ∀𝑣 ∈ 𝑃 𝑘−1(𝐼𝑗), and ℛ𝑢
(︁
𝑥+

𝑗− 1
2

)︁
= 𝑢

(︁
𝑥𝑗− 1

2

)︁
, (2.1)

and ∫︁
𝐼𝑗

[𝒬𝑢(𝑥)− 𝑢(𝑥)] 𝑣(𝑥) d𝑥 = 0, ∀𝑣 ∈ 𝑃 𝑘−1(𝐼𝑗), and 𝒬𝑢
(︁
𝑥−

𝑗+ 1
2

)︁
= 𝑢

(︁
𝑥𝑗+ 1

2

)︁
. (2.2)

Furthermore, we have (c.f. [8])

‖𝒫𝑢− 𝑢‖+ ‖ℛ𝑢− 𝑢‖+ ‖𝒬𝑢− 𝑢‖ ≤ 𝐶 ‖𝑢‖𝐻𝑘+1 ℎ
𝑘+1, (2.3)

where the positive constant 𝐶 is independent of 𝑢 and ℎ.

2.3. Properties of the Itô formula

For continuous semi-martingales 𝑋 and 𝑌 , we have

𝑋𝑡𝑌𝑡 = 𝑋0𝑌0 +
∫︁ 𝑡

0

𝑋𝑠 d𝑌𝑠 +
∫︁ 𝑡

0

𝑌𝑠 d𝑋𝑠 + ⟨𝑋,𝑌 ⟩𝑡 ,

where ⟨𝑋,𝑌 ⟩ is the quadratic covariation process of 𝑋 and 𝑌 . Note that ⟨𝑋,𝑌 ⟩ = ⟨𝑌,𝑋⟩. For any locally
bounded adapted process 𝐻, we have⟨∫︁ ·

0

𝐻𝑠 d𝑋𝑠, 𝑌

⟩
𝑡

=
∫︁ 𝑡

0

𝐻𝑠 d ⟨𝑋,𝑌 ⟩𝑠 . (2.4)
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Moreover, if 𝑋 is continuous and is of bounded total variation, we have

⟨𝑋,𝑌 ⟩ = 0. (2.5)

The following lemma is well-known in the martingale theory. See e.g. [23], Theorem 10.19, page 273.

Lemma 2.1. If E
[︂(︁∫︀ 𝑇

0
𝐻2

𝑠 d𝑠
)︁ 1

2
]︂
<∞, then

{︁∫︀ 𝑡

0
𝐻𝑠 d𝑊𝑠, 0 ≤ 𝑡 ≤ 𝑇

}︁
is a martingale.

For more details on the Itô formula, the reader is referred to [23,40].

3. The LDG method for nonlinear parabolic SPDEs

3.1. The semi-discrete LDG method

In this subsection, we formulate the LDG method for fully nonlinear parabolic SPDEs. As a special class of
the DG methods, the main technique of the method is to rewrite (1.1) into an equivalent system containing only
first-order spatial derivatives, which is further discretized by the standard DG method with correct definition
of numerical fluxes. To do this, firstly, we rewrite the problem as a first-order system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d𝑢 =
[︀
𝑤𝑥 + 𝜓(·, 𝑥, 𝑡, 𝑢, 𝑣)

]︀
d𝑡+ 𝑔(·, 𝑥, 𝑡, 𝑢, 𝑣) d𝑊𝑡, (𝑥, 𝑡) ∈ [0, 2𝜋]× (0, 𝑇 ]; (3.1a)

𝑣(𝑥, 𝑡) = 𝑢𝑥(𝑥, 𝑡), (𝑥, 𝑡) ∈ [0, 2𝜋]× (0, 𝑇 ]; (3.1b)
𝑤(𝑥, 𝑡) = 𝑎(·, 𝑥, 𝑡, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡))𝑣(𝑥, 𝑡), (𝑥, 𝑡) ∈ [0, 2𝜋]× (0, 𝑇 ]; (3.1c)
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [0, 2𝜋]. (3.1d)

The LDG method for (1.1) is now obtained by simply discretizing the above system with the DG method.
We seek an approximation (𝑢ℎ, 𝑣ℎ, 𝑤ℎ)𝑇 to the exact solution (𝑢, 𝑣, 𝑤)𝑇 such that for any (𝜔, 𝑡) ∈ Ω × [0, 𝑇 ],
𝑢ℎ(𝜔, ·, 𝑡), 𝑣ℎ(𝜔, ·, 𝑡) and 𝑤ℎ(𝜔, ·, 𝑡) belong to the finite dimensional space 𝑉ℎ. In order to determine the approx-
imate solution (𝑢ℎ, 𝑣ℎ, 𝑤ℎ)𝑇 , we first note that by multiplying (3.1a), (3.1b), (3.1c), and (3.1d) with arbitrary
smooth functions 𝑟, 𝑧, 𝑝 and 𝑞, respectively, and integrating over 𝐼𝑗 with 𝑗 = 1, 2, . . . , 𝑁 , we get, after a simple
formal integration by parts in (3.1a) and (3.1b),∫︁

𝐼𝑗

𝑟(𝑥) d𝑢(𝜔, 𝑥, 𝑡) d𝑥 =
{︂
−
∫︁

𝐼𝑗

𝑤 (𝜔, 𝑥, 𝑡) 𝑟𝑥 (𝑥) d𝑥

+𝑤
(︁
𝜔, 𝑥𝑗+ 1

2
, 𝑡
)︁
𝑟
(︁
𝑥−

𝑗+ 1
2

)︁
− 𝑤

(︁
𝜔, 𝑥𝑗− 1

2
, 𝑡
)︁
𝑟
(︁
𝑥+

𝑗− 1
2

)︁
+
∫︁

𝐼𝑗

𝜓
(︀
𝜔, 𝑥, 𝑡, 𝑢(𝜔, 𝑥, 𝑡), 𝑣(𝜔, 𝑥, 𝑡)

)︀
𝑟(𝑥) d𝑥

}︂
d𝑡

+
∫︁

𝐼𝑗

𝑔
(︀
𝜔, 𝑥, 𝑡, 𝑢(𝜔, 𝑥, 𝑡), 𝑣(𝜔, 𝑥, 𝑡)

)︀
𝑟(𝑥) d𝑥d𝑊𝑡,∫︁

𝐼𝑗

𝑣(𝜔, 𝑥, 𝑡)𝑧(𝑥) d𝑥 = −
∫︁

𝐼𝑗

𝑢 (𝜔, 𝑥, 𝑡) 𝑧𝑥 (𝑥) d𝑥

+𝑢
(︁
𝜔, 𝑥𝑗+ 1

2
, 𝑡
)︁
𝑧
(︁
𝑥−

𝑗+ 1
2

)︁
− 𝑢

(︁
𝜔, 𝑥𝑗− 1

2
, 𝑡
)︁
𝑧
(︁
𝑥+

𝑗− 1
2

)︁
,∫︁

𝐼𝑗

𝑤(𝜔, 𝑥, 𝑡) 𝑝(𝑥) d𝑥 =
∫︁

𝐼𝑗

𝑎
(︀
𝜔, 𝑥, 𝑡, 𝑢 (𝜔, 𝑥, 𝑡) , 𝑣 (𝜔, 𝑥, 𝑡)

)︀
𝑣 (𝜔, 𝑥, 𝑡) 𝑝(𝑥) d𝑥,∫︁

𝐼𝑗

𝑢(𝜔, 𝑥, 0) 𝑞(𝑥) d𝑥 =
∫︁

𝐼𝑗

𝑢0(𝑥) 𝑞(𝑥) d𝑥.
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Next, we replace the smooth functions 𝑟, 𝑧, 𝑝 and 𝑞 with test functions 𝑟ℎ, 𝑧ℎ, 𝑝ℎ and 𝑞ℎ, respectively, in
the finite element space 𝑉ℎ and the exact solution (𝑢, 𝑣, 𝑤)𝑇 with the approximation (𝑢ℎ, 𝑣ℎ, 𝑤ℎ)𝑇 . Since the
functions in 𝑉ℎ might have discontinuities on an element interface, we must also replace the boundary terms

𝑤
(︁
𝜔, 𝑥𝑗+ 1

2
, 𝑡
)︁
, 𝑢

(︁
𝜔, 𝑥𝑗+ 1

2
, 𝑡
)︁

with the numerical fluxes ̂︀𝑤𝑗+ 1
2

(𝜔, 𝑡) , ̂︀𝑢𝑗+ 1
2

(𝜔, 𝑡)

respectively, which will be suitably chosen later. Thus, the approximate solution given by the LDG method is
defined as the solution of the following weak formulation:∫︁

𝐼𝑗

𝑟ℎ(𝑥) d𝑢ℎ(𝜔, 𝑥, 𝑡) d𝑥 =
{︂
−
∫︁

𝐼𝑗

𝑤ℎ (𝜔, 𝑥, 𝑡) 𝑟ℎ𝑥 (𝑥) d𝑥

+ ̂︀𝑤𝑗+ 1
2

(𝜔, 𝑡) 𝑟ℎ
(︁
𝑥−

𝑗+ 1
2

)︁
− ̂︀𝑤𝑗− 1

2
(𝜔, 𝑡) 𝑟ℎ

(︁
𝑥+

𝑗− 1
2

)︁
+
∫︁

𝐼𝑗

𝜓
(︀
𝜔, 𝑥, 𝑡, 𝑢ℎ(𝜔, 𝑥, 𝑡), 𝑣ℎ(𝜔, 𝑥, 𝑡)

)︀
𝑟ℎ(𝑥) d𝑥

}︂
d𝑡

+
∫︁

𝐼𝑗

𝑔
(︀
𝜔, 𝑥, 𝑡, 𝑢ℎ(𝜔, 𝑥, 𝑡), 𝑣ℎ(𝜔, 𝑥, 𝑡)

)︀
𝑟ℎ(𝑥) d𝑥d𝑊𝑡, (3.2a)∫︁

𝐼𝑗

𝑣ℎ(𝜔, 𝑥, 𝑡)𝑧ℎ(𝑥) d𝑥 = −
∫︁

𝐼𝑗

𝑢ℎ (𝜔, 𝑥, 𝑡) 𝑧ℎ𝑥 (𝑥) d𝑥

+ ̂︀𝑢𝑗+ 1
2

(𝜔, 𝑡) 𝑧ℎ

(︁
𝑥−

𝑗+ 1
2

)︁
− ̂︀𝑢𝑗− 1

2
(𝜔, 𝑡) 𝑧ℎ

(︁
𝑥+

𝑗− 1
2

)︁
, (3.2b)∫︁

𝐼𝑗

𝑤ℎ(𝜔, 𝑥, 𝑡) 𝑝ℎ(𝑥) d𝑥 =
∫︁

𝐼𝑗

[︀
𝑎
(︀
·, 𝑢ℎ, 𝑣ℎ

)︀
𝑣ℎ

]︀
(𝜔, 𝑥, 𝑡) 𝑝ℎ(𝑥) d𝑥, (3.2c)∫︁

𝐼𝑗

𝑢ℎ(𝜔, 𝑥, 0) 𝑞ℎ(𝑥) d𝑥 =
∫︁

𝐼𝑗

𝑢0(𝑥) 𝑞ℎ(𝑥) d𝑥, (3.2d)

for any (𝑟ℎ, 𝑧ℎ, 𝑝ℎ, 𝑞ℎ) ∈ (𝑉ℎ)4. It only remains to choose suitable numerical fluxes. For 𝑗 = 0, 1, . . . , 𝑁 , we
choose ̂︀𝑤𝑗+ 1

2
(𝜔, 𝑡) := 𝑤ℎ

(︁
𝜔, 𝑥+

𝑗+ 1
2
, 𝑡
)︁
, ̂︀𝑢𝑗+ 1

2
(𝜔, 𝑡) := 𝑢ℎ

(︁
𝜔, 𝑥−

𝑗+ 1
2
, 𝑡
)︁
. (3.3)

Note that, by periodicity, we have ̂︀𝑤𝑁+ 1
2

= ̂︀𝑤 1
2
, ̂︀𝑢 1

2
= ̂︀𝑢𝑁+ 1

2
.

Remark 3.1. The choice of ( ̂︀𝑤, ̂︀𝑢) in (3.3) is referred to as the alternating flux, which is essential for the proof
of optimal error estimates. We can also define the numerical flux in an alternating way as follows:

̂︀𝑤𝑗+ 1
2

(𝜔, 𝑡) := 𝑤ℎ

(︁
𝜔, 𝑥−

𝑗+ 1
2
, 𝑡
)︁
, ̂︀𝑢𝑗+ 1

2
(𝜔, 𝑡) := 𝑢ℎ

(︁
𝜔, 𝑥+

𝑗+ 1
2
, 𝑡
)︁
.

3.2. The stochastic ordinary differential equation derived from the spatial discretization

The LDG method, as a spatial discretization, transfers the primal problem into a system of ordinary stochastic
differential equations, which will be specified in this subsection. For 𝑥 ∈ 𝐼𝑗 , the numerical solution should have
the form

𝑢ℎ(𝜔, 𝑥, 𝑡) =
𝑘∑︁

𝑙=0

u𝑙,𝑗(𝜔, 𝑡)𝜙𝑗
𝑙 (𝑥), 𝑣ℎ(𝜔, 𝑥, 𝑡) =

𝑘∑︁
𝑙=0

v𝑙,𝑗(𝜔, 𝑡)𝜙𝑗
𝑙 (𝑥),
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and

𝑤ℎ(𝜔, 𝑥, 𝑡) =
𝑘∑︁

𝑙=0

w𝑙,𝑗(𝜔, 𝑡)𝜙𝑗
𝑙 (𝑥),

where {𝜙𝑗
𝑙 , 𝑙 = 0, 1, . . . , 𝑘} is an arbitrary basis of 𝑃 𝑘(𝐼𝑗).

By periodicity, we define the “ghost” coefficients as follows:

u𝑙,0 = u𝑙,𝑁 , v𝑙,0 = v𝑙,𝑁 , w𝑙,0 = w𝑙,𝑁 ,

u𝑙,𝑁+1 = u𝑙,1, v𝑙,𝑁+1 = v𝑙,1, w𝑙,𝑁+1 = w𝑙,1.

Our aim is to solve (3.2) to get the coefficients u(𝜔, 𝑡) = [u𝑙,𝑗(𝜔, 𝑡)]𝑙∈{0,...,𝑘},𝑗∈{0,...,𝑁+1}, v(𝜔, 𝑡) =
[v𝑙,𝑗(𝜔, 𝑡)]𝑙∈{0,...,𝑘},𝑗∈{0,...,𝑁+1} and w(𝜔, 𝑡) = [w𝑙,𝑗(𝜔, 𝑡)]𝑙∈{0,...,𝑘},𝑗∈{0,...,𝑁+1}.

3.2.1. Representation for v(𝜔, 𝑡)

For 𝑗 = 1, 2, . . . , 𝑁 , by taking 𝑧ℎ := 𝜙𝑗
𝑚 for 𝑚 = 0, 1, . . . , 𝑘 in equality (3.2b), we have

𝑘∑︁
𝑙=0

(︃∫︁
𝐼𝑗

𝜙𝑗
𝑚(𝑥)𝜙𝑗

𝑙 (𝑥) d𝑥

)︃
v𝑙,𝑗(𝜔, 𝑡) = −

∫︁
𝐼𝑗

𝑘∑︁
𝑛=0

u𝑛,𝑗(𝜔, 𝑡)𝜙𝑗
𝑛(𝑥)𝜙𝑗

𝑚𝑥(𝑥) d𝑥

+
𝑘∑︁

𝑛=0

u𝑛,𝑗(𝜔, 𝑡)𝜙𝑗
𝑛

(︁
𝑥𝑗+ 1

2

)︁
𝜙𝑗

𝑚

(︁
𝑥𝑗+ 1

2

)︁
−

𝑘∑︁
𝑛=0

u𝑛,𝑗−1(𝜔, 𝑡)𝜙𝑗−1
𝑛

(︁
𝑥𝑗− 1

2

)︁
𝜙𝑗

𝑚

(︁
𝑥𝑗− 1

2

)︁
.

The mass matrix 𝐴𝑗 := [𝐴𝑗
𝑚𝑙] with

𝐴𝑗
𝑚𝑙 :=

∫︁
𝐼𝑗

𝜙𝑗
𝑚(𝑥)𝜙𝑗

𝑙 (𝑥) d𝑥

is invertible, and its inverse is denoted by 𝐴𝑗,−1.
It gives that

v𝑙,𝑗(𝜔, 𝑡) = V𝑙,𝑗

(︀
u(𝜔, 𝑡)

)︀
, (3.4)

where

V𝑙,𝑗(u) := −
∫︁

𝐼𝑗

𝑘∑︁
𝑛=0

u𝑛,𝑗 𝜙
𝑗
𝑛(𝑥)

𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚𝑥(𝑥) d𝑥

+
𝑘∑︁

𝑛=0

u𝑛,𝑗 𝜙
𝑗
𝑛

(︁
𝑥𝑗+ 1

2

)︁ 𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚

(︁
𝑥𝑗+ 1

2

)︁
−

𝑘∑︁
𝑛=0

u𝑛,𝑗−1 𝜙
𝑗−1
𝑛

(︁
𝑥𝑗− 1

2

)︁ 𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚

(︁
𝑥𝑗− 1

2

)︁
.

By periodicity, we have

V𝑙,0 = V𝑙,𝑁 , V𝑙,𝑁+1 = V𝑙,1.
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3.2.2. Representation for w(𝜔, 𝑡)

For 𝑗 = 1, 2, . . . , 𝑁 , by taking 𝑝ℎ := 𝜙𝑗
𝑚 for 𝑚 = 0, 1, . . . , 𝑘 in equality (3.2c), we have

𝑘∑︁
𝑙=0

(︃∫︁
𝐼𝑗

𝜙𝑗
𝑚(𝑥)𝜙𝑗

𝑙 (𝑥) d𝑥

)︃
w𝑙,𝑗(𝜔, 𝑡) =

∫︁
𝐼𝑗

𝑎

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u𝑛,𝑗(𝜔, 𝑡)𝜙𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

v𝑛,𝑗(𝜔, 𝑡)𝜙𝑗
𝑛(𝑥)

)︃

×
𝑘∑︁

𝑛=0

v𝑛,𝑗(𝜔, 𝑡)𝜙𝑗
𝑛(𝑥)𝜙𝑗

𝑚(𝑥) d𝑥.

It turns out that

w𝑙,𝑗(𝜔, 𝑡) = W𝑙,𝑗

(︀
𝜔, 𝑡,u(𝜔, 𝑡)

)︀
, (3.5)

where

W𝑙,𝑗(𝜔, 𝑡,u) :=
∫︁

𝐼𝑗

[︃
𝑎

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u𝑛,𝑗𝜙
𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

V𝑛,𝑗(u)𝜙𝑗
𝑛(𝑥)

)︃

×
𝑘∑︁

𝑛=0

V𝑛,𝑗(u)𝜙𝑗
𝑛(𝑥)

𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚(𝑥)

]︃
d𝑥.

By periodicity, we have

W𝑙,0 = W𝑙,𝑁 , W𝑙,𝑁+1 = W𝑙,1.

3.2.3. Representation for u(𝜔, 𝑡)

For 𝑗 = 1, 2, . . . , 𝑁 , by taking 𝑟ℎ := 𝜙𝑗
𝑚 for 𝑚 = 0, 1, . . . , 𝑘 in equality (3.2a), we have

𝑘∑︁
𝑙=0

(︃∫︁
𝐼𝑗

𝜙𝑗
𝑚(𝑥)𝜙𝑗

𝑙 (𝑥) d𝑥

)︃
𝑑u𝑙,𝑗(𝜔, 𝑡) = −

∫︁
𝐼𝑗

𝑘∑︁
𝑛=0

w𝑛,𝑗(𝜔, 𝑡)𝜙𝑗
𝑛(𝑥)𝜙𝑗

𝑚𝑥 (𝑥) d𝑥 d𝑡

+
𝑘∑︁

𝑛=0

[︁
w𝑛,𝑗+1(𝜔, 𝑡)𝜙𝑗+1

𝑛

(︁
𝑥𝑗+ 1

2

)︁
𝜙𝑗

𝑚

(︁
𝑥𝑗+ 1

2

)︁
− w𝑛,𝑗(𝜔, 𝑡)𝜙𝑗

𝑛

(︁
𝑥𝑗− 1

2

)︁
𝜙𝑗

𝑚

(︁
𝑥𝑗− 1

2

)︁]︁
d𝑡

+
∫︁

𝐼𝑗

𝜓

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u𝑛,𝑗(𝜔, 𝑡)𝜙𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

v𝑛,𝑗(𝜔, 𝑡)𝜙𝑗
𝑛(𝑥)

)︃
𝜙𝑗

𝑚(𝑥) d𝑥d𝑡

+
∫︁

𝐼𝑗

𝑔

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u𝑛,𝑗(𝜔, 𝑡)𝜙𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

v𝑛,𝑗(𝜔, 𝑡)𝜙𝑗
𝑛(𝑥)

)︃
𝜙𝑗

𝑚(𝑥) d𝑥d𝑊𝑡.

Then we obtain the following SDE of u:

𝑑u(𝑡) = 𝐹
(︀
·, 𝑡,u(𝑡)

)︀
d𝑡+𝐺

(︀
·, 𝑡,u(𝑡)

)︀
d𝑊𝑡, (3.6)
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where for 𝑗 = 1, 2, . . . , 𝑁 and 𝑙 = 0, 1, . . . , 𝑘,

𝐹𝑙,𝑗 (𝜔, 𝑡,u) :=
∫︁

𝐼𝑗

𝜓

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u𝑛,𝑗𝜙
𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

V𝑛,𝑗 (u)𝜙𝑗
𝑛(𝑥)

)︃
𝑘∑︁

𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚(𝑥) d𝑥

−
∫︁

𝐼𝑗

𝑘∑︁
𝑛=0

W𝑛,𝑗(𝜔, 𝑡,u)𝜙𝑗
𝑛(𝑥)

𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚𝑥 (𝑥) d𝑥

+
𝑘∑︁

𝑛=0

W𝑛,𝑗+1(𝜔, 𝑡,u)𝜙𝑗+1
𝑛

(︁
𝑥𝑗+ 1

2

)︁ 𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚

(︁
𝑥𝑗+ 1

2

)︁
−

𝑘∑︁
𝑛=0

W𝑛,𝑗(𝜔, 𝑡,u)𝜙𝑗
𝑛

(︁
𝑥𝑗− 1

2

)︁ 𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚

(︁
𝑥𝑗− 1

2

)︁
and

𝐺𝑙,𝑗 (𝜔, 𝑡,u) :=
∫︁

𝐼𝑗

𝑔

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u𝑛,𝑗𝜙
𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

V𝑛,𝑗 (u)𝜙𝑗
𝑛(𝑥)

)︃
𝑘∑︁

𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚(𝑥) d𝑥,

with periodic settings 𝐹𝑙,0 = 𝐹𝑙,𝑁 , 𝐹𝑙,𝑁+1 = 𝐹𝑙,1, 𝐺𝑙,0 = 𝐺𝑙,𝑁 , and 𝐺𝑙,𝑁+1 = 𝐺𝑙,1.

Lemma 3.2. Let assumptions (H2)–(H4) hold. Then for any 𝑁 ∈ N+, the functions 𝐹 and 𝐺 are locally
Lipschitz continuous in the variable u, i.e., for any 𝑀 ∈ N+, there is a positive constant 𝐿𝑁 (𝑀) such that

|𝐹 (𝜔, 𝑡,u)− 𝐹 (𝜔, 𝑡,u′)|+ |𝐺 (𝜔, 𝑡,u)−𝐺 (𝜔, 𝑡,u′)| ≤ 𝐿𝑁 (𝑀) |u− u′|

for all (𝜔, 𝑡) ∈ Ω× [0, 𝑇 ] and all u,u′ ∈ R(𝑘+1)×(𝑁+2) with |u| ∨ |u′| ≤𝑀 (where 𝑎 ∨ 𝑏 = max(𝑎, 𝑏)).

Proof. We only show the local Lipschitz continuity of 𝐹 for fixed 𝑁 ∈ N, and that of 𝐺 can be proved in a
similar way. The proof consists of the following three steps:

Step 1. We first show the uniform Lipschitz continuity of V for fixed 𝑁 ∈ N. For any u,u′ ∈ R(𝑘+1)×(𝑁+2),
𝑙 = 0, 1, . . . , 𝑘, and 𝑗 = 1, 2, . . . , 𝑁 , we have

V𝑙,𝑗(u)−V𝑙,𝑗(u′) = 𝐸𝑙,𝑗
1 + 𝐸𝑙,𝑗

2 + 𝐸𝑙,𝑗
3 ,

where

𝐸𝑙,𝑗
1 := −

∫︁
𝐼𝑗

𝑘∑︁
𝑛=0

(︀
u𝑛,𝑗 − u′𝑛,𝑗

)︀
𝜙𝑗

𝑛(𝑥)
𝑘∑︁

𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚𝑥(𝑥) d𝑥,

𝐸𝑙,𝑗
2 :=

𝑘∑︁
𝑛=0

(︀
u𝑛,𝑗 − u′𝑛,𝑗

)︀
𝜙𝑗

𝑛

(︁
𝑥𝑗+ 1

2

)︁ 𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚

(︁
𝑥𝑗+ 1

2

)︁
,

𝐸𝑙,𝑗
3 := −

𝑘∑︁
𝑛=0

(︀
u𝑛,𝑗−1 − u′𝑛,𝑗−1

)︀
𝜙𝑗−1

𝑛

(︁
𝑥𝑗− 1

2

)︁ 𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚

(︁
𝑥𝑗− 1

2

)︁
·

Then we have ⃒⃒⃒
𝐸𝑙,𝑗

1

⃒⃒⃒
≤

𝑘∑︁
𝑛=0

∫︁
𝐼𝑗

⃒⃒
𝜙𝑗

𝑛(𝑥)
⃒⃒ 𝑘∑︁

𝑚=0

⃒⃒
𝜙𝑗

𝑚𝑥(𝑥)
⃒⃒

d𝑥
⃦⃦
𝐴𝑗,−1

⃦⃦
∞

⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒

≤
𝑘∑︁

𝑛=0

𝐶𝑁

⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒
≤ 𝐶𝑁

(︃
𝑘∑︁

𝑛=0

⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2)︃ 1
2

,
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where 𝐶𝑁 is a positive constant which depends on 𝑁 . Next, we have⃒⃒⃒
𝐸𝑙,𝑗

2

⃒⃒⃒
≤

𝑘∑︁
𝑛=0

⃒⃒⃒
𝜙𝑗

𝑛

(︁
𝑥𝑗+ 1

2

)︁⃒⃒⃒ ⃦⃦
𝐴𝑗,−1

⃦⃦
∞

𝑘∑︁
𝑚=0

⃒⃒⃒
𝜙𝑗

𝑚

(︁
𝑥𝑗+ 1

2

)︁⃒⃒⃒ ⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒

≤
𝑘∑︁

𝑛=0

𝐶𝑁

⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒
≤ 𝐶𝑁

(︃
𝑘∑︁

𝑛=0

⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2)︃ 1
2

.

By similar calculation, we get that

⃒⃒⃒
𝐸𝑙,𝑗

3

⃒⃒⃒
≤ 𝐶𝑁

(︃
𝑘∑︁

𝑛=0

⃒⃒
u𝑛,𝑗−1 − u′𝑛,𝑗−1

⃒⃒2)︃ 1
2

.

It turns out that for any 𝑙 = 0, 1, . . . , 𝑘, 𝑗 = 1, 2, . . . , 𝑁

|V𝑙,𝑗(u)−V𝑙,𝑗(u′)|2 ≤ 3
(︂⃒⃒⃒
𝐸𝑙,𝑗

1

⃒⃒⃒2
+
⃒⃒⃒
𝐸𝑙,𝑗

2

⃒⃒⃒2
+
⃒⃒⃒
𝐸𝑙,𝑗

3

⃒⃒⃒2)︂
≤ 𝐶𝑁

𝑘∑︁
𝑛=0

(︁⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2 +
⃒⃒
u𝑛,𝑗−1 − u′𝑛,𝑗−1

⃒⃒2)︁
. (3.7)

Then by the periodicity, it holds that

|V(u)−V(u′)|2 =
𝑘∑︁

𝑙=0

𝑁+1∑︁
𝑗=0

|V𝑙,𝑗(u)−V𝑙,𝑗(u′)|2

≤
𝑘∑︁

𝑙=0

𝑁+1∑︁
𝑗=0

𝐶2
𝑁

𝑘∑︁
𝑛=0

(︁⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2 +
⃒⃒
u𝑛,𝑗−1 − u′𝑛,𝑗−1

⃒⃒2)︁
= 2(𝑘 + 1)𝐶2

𝑁 |u− u′|2 . (3.8)

Step 2. Next we consider the local Lipschitz continuity of W with respect to the variable u for fixed 𝑁 ∈ N.
Note that for any 𝑙 = 0, 1, . . . , 𝑘, 𝑗 = 1, 2, . . . , 𝑁 , u,u′ ∈ R(𝑘+1)×(𝑁+2) with |u| ∨ |u′| ≤𝑀 ,

W𝑙,𝑗(𝜔, 𝑡,u)−W𝑙,𝑗(𝜔, 𝑡,u′) = 𝐸𝑙,𝑗
4 + 𝐸𝑙,𝑗

5 ,

where

𝐸𝑙,𝑗
4 :=

∫︁
𝐼𝑗

𝑎

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u𝑛,𝑗𝜙
𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

V𝑛,𝑗(u)𝜙𝑗
𝑛(𝑥)

)︃

×
𝑘∑︁

𝑛=0

(V𝑛,𝑗(u)−V𝑛,𝑗(u′))𝜙𝑗
𝑛(𝑥)

𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚(𝑥) d𝑥,

𝐸𝑙,𝑗
5 :=

∫︁
𝐼𝑗

[︃
𝑎

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u𝑛,𝑗𝜙
𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

V𝑛,𝑗(u)𝜙𝑗
𝑛(𝑥)

)︃

− 𝑎

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u′𝑛,𝑗𝜙
𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

V𝑛,𝑗(u′)𝜙𝑗
𝑛(𝑥)

)︃]︃

×
𝑘∑︁

𝑛=0

V𝑛,𝑗(u′)𝜙𝑗
𝑛(𝑥)

𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚(𝑥) d𝑥. (3.9)



LDG METHOD FOR STOCHASTIC PARABOLIC EQUATIONS S197

From (H2) and (3.7), we have

⃒⃒⃒
𝐸𝑙,𝑗

4

⃒⃒⃒
≤ Λ

𝑘∑︁
𝑛=0

∫︁
𝐼𝑗

⃒⃒
𝜙𝑗

𝑛(𝑥)
⃒⃒ 𝑘∑︁

𝑚=0

⃒⃒
𝜙𝑗

𝑚(𝑥)
⃒⃒

d𝑥
⃦⃦
𝐴𝑗,−1

⃦⃦
∞ |V𝑛,𝑗(u)−V𝑛,𝑗(u′)|

≤
𝑘∑︁

𝑛=0

𝐶𝑁 |V𝑛,𝑗(u)−V𝑛,𝑗(u′)| ≤ 𝐶𝑁

(︃
𝑘∑︁

𝑛=0

|V𝑛,𝑗(u)−V𝑛,𝑗(u′)|2
)︃ 1

2

≤ 𝐶𝑁

[︃
𝑘∑︁

𝑛=0

(︁⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2 +
⃒⃒
u𝑛,𝑗−1 − u′𝑛,𝑗−1

⃒⃒2)︁]︃ 1
2

. (3.10)

Using Cauchy–Schwartz inequality, we have

⃒⃒⃒
𝐸𝑙,𝑗

5

⃒⃒⃒2
≤
∫︁

𝐼𝑗

⃒⃒⃒⃒
𝑎

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u𝑛,𝑗𝜙
𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

V𝑛,𝑗(u)𝜙𝑗
𝑛(𝑥)

)︃

− 𝑎

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u′𝑛,𝑗𝜙
𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

V𝑛,𝑗(u′)𝜙𝑗
𝑛(𝑥)

)︃ ⃒⃒⃒⃒2
d𝑥

×
∫︁

𝐼𝑗

⃒⃒⃒⃒
⃒

𝑘∑︁
𝑛=0

V𝑛,𝑗(u′)𝜙𝑗
𝑛(𝑥)

𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚(𝑥)

⃒⃒⃒⃒
⃒
2

d𝑥

≤ 𝐶𝑁 |V(u′)|2
∫︁

𝐼𝑗

𝐿𝑎(𝑀)2
(︃⃒⃒⃒⃒
⃒

𝑘∑︁
𝑛=0

(︀
u𝑛,𝑗 − u′𝑛,𝑗

)︀
𝜙𝑗

𝑛(𝑥)

⃒⃒⃒⃒
⃒+

⃒⃒⃒⃒
⃒

𝑘∑︁
𝑛=0

(V𝑛,𝑗(u)−V𝑛,𝑗(u′))𝜙𝑗
𝑛(𝑥)

⃒⃒⃒⃒
⃒
)︃2

d𝑥

≤ 𝐶𝑁 (𝑀)
𝑘∑︁

𝑛=0

(︁⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2 + |V𝑛,𝑗(u)−V𝑛,𝑗(u′)|2
)︁

≤ 𝐶𝑁 (𝑀)
𝑘∑︁

𝑛=0

(︁⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2 +
⃒⃒
u𝑛,𝑗−1 − u′𝑛,𝑗−1

⃒⃒2)︁
,

where 𝐿𝑎(𝑀) is the local Lipschitz constant of the function 𝑎.
For any 𝑙 = 0, 1, . . . , 𝑘 with 𝑗 = 1, 2, . . . , 𝑁 , we have

|W𝑙,𝑗(𝜔, 𝑡,u)−W𝑙,𝑗(𝜔, 𝑡,u′)|2 ≤ 2
(︂⃒⃒⃒
𝐸𝑙,𝑗

4

⃒⃒⃒2
+
⃒⃒⃒
𝐸𝑙,𝑗

5

⃒⃒⃒2)︂
≤ 𝐶𝑁 (𝑀)

𝑘∑︁
𝑛=0

(︁⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2 +
⃒⃒
u𝑛,𝑗−1 − u′𝑛,𝑗−1

⃒⃒2)︁
. (3.11)

Thus

|W(𝜔, 𝑡,u)−W(𝜔, 𝑡,u′)|2 ≤ 𝐶𝑁 (𝑀) |u− u′|2 .

Step 3. We are now ready to prove the local Lipschitz continuity of the function 𝐹 for fixed 𝑁 ∈ N. Note that
for any 𝑙 = 0, 1, . . . , 𝑘 and 𝑗 = 1, 2, . . . , 𝑁 ,

𝐹𝑙,𝑗(𝜔, 𝑡,u)− 𝐹𝑙,𝑗(𝜔, 𝑡,u′) = 𝐸𝑙,𝑗
6 + 𝐸𝑙,𝑗

7 + 𝐸𝑙,𝑗
8 + 𝐸𝑙,𝑗

9 ,
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where

𝐸𝑙,𝑗
6 := −

∫︁
𝐼𝑗

𝑘∑︁
𝑛=0

(︀
W𝑛,𝑗(𝜔, 𝑡,u)−W𝑛,𝑗(𝜔, 𝑡,u′)

)︀
𝜙𝑗

𝑛(𝑥)
𝑘∑︁

𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚𝑥 (𝑥) d𝑥,

𝐸𝑙,𝑗
7 :=

𝑘∑︁
𝑛=0

(︀
W𝑛,𝑗+1(𝜔, 𝑡,u)−W𝑛,𝑗+1(𝜔, 𝑡,u′)

)︀
𝜙𝑗+1

𝑛

(︁
𝑥𝑗+ 1

2

)︁ 𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚

(︁
𝑥𝑗+ 1

2

)︁
,

𝐸𝑙,𝑗
8 := −

𝑘∑︁
𝑛=0

(︀
W𝑛,𝑗(𝜔, 𝑡,u)−W𝑛,𝑗(𝜔, 𝑡,u′)

)︀
𝜙𝑗

𝑛

(︁
𝑥𝑗− 1

2

)︁ 𝑘∑︁
𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚

(︁
𝑥𝑗− 1

2

)︁
,

𝐸𝑙,𝑗
9 :=

∫︁
𝐼𝑗

[︃
𝜓

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u𝑛,𝑗𝜙
𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

V𝑛,𝑗 (u)𝜙𝑗
𝑛(𝑥)

)︃

− 𝜓

(︃
𝜔, 𝑥, 𝑡,

𝑘∑︁
𝑛=0

u′𝑛,𝑗𝜙
𝑗
𝑛(𝑥),

𝑘∑︁
𝑛=0

V𝑛,𝑗 (u′)𝜙𝑗
𝑛(𝑥)

)︃]︃
𝑘∑︁

𝑚=0

𝐴𝑗,−1
𝑙𝑚 𝜙𝑗

𝑚(𝑥) d𝑥.

Similar to (3.7), we have⃒⃒⃒
𝐸𝑙,𝑗

6

⃒⃒⃒2
+
⃒⃒⃒
𝐸𝑙,𝑗

7

⃒⃒⃒2
+
⃒⃒⃒
𝐸𝑙,𝑗

8

⃒⃒⃒2
≤ 𝐶𝑁 (𝑀)

𝑘∑︁
𝑛=0

(︁
|W𝑛,𝑗(𝜔, 𝑡,u)−W𝑛,𝑗(𝜔, 𝑡,u′)|2 + |W𝑛,𝑗+1(𝜔, 𝑡,u)−W𝑛,𝑗+1(𝜔, 𝑡,u′)|2

)︁
.

In view of the Lipschitz continuity of W (see (3.11)), we have

⃒⃒⃒
𝐸𝑙,𝑗

6

⃒⃒⃒2
+
⃒⃒⃒
𝐸𝑙,𝑗

7

⃒⃒⃒2
+
⃒⃒⃒
𝐸𝑙,𝑗

8

⃒⃒⃒2
≤ 𝐶𝑁 (𝑀)

𝑘∑︁
𝑛=0

(︁⃒⃒
u𝑛,𝑗−1 − u′𝑛,𝑗−1

⃒⃒2
+
⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2 +
⃒⃒
u𝑛,𝑗+1 − u′𝑛,𝑗+1

⃒⃒2)︁
. (3.12)

Similar to Step 2, using the Lipschitz continuity of 𝜓 and V, we have

⃒⃒⃒
𝐸𝑙,𝑗

9

⃒⃒⃒2
≤ 𝐶𝑁

𝑘∑︁
𝑛=0

(︁⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2 + |V𝑛,𝑗(u)−V𝑛,𝑗(u′)|2
)︁

≤ 𝐶𝑁

𝑘∑︁
𝑛=0

(︁⃒⃒
u𝑛,𝑗 − u′𝑛,𝑗

⃒⃒2 +
⃒⃒
u𝑛,𝑗−1 − u′𝑛,𝑗−1

⃒⃒2)︁
.

At last, by the periodicity of the numerical solution 𝑢ℎ, we see that for any 𝑁,𝑀 ∈ N+, there exists a
constant 𝐿𝑁 (𝑀) such that, for all (𝜔, 𝑡) ∈ Ω× [0, 𝑇 ] and all u,u′ ∈ R(𝑘+1)×(𝑁+2) with |u| ∨ |u′| ≤𝑀 ,

|𝐹 (𝜔, 𝑡,u)− 𝐹 (𝜔, 𝑡,u′)| ≤ 𝐿𝑁 (𝑀) |u− u′| .

The proof is complete. �

Similar to the proof of Lemma 3.2, we obtain that the coefficients of SDE (3.6) satisfy the linearly growing
condition.
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Lemma 3.3. Let assumptions (H2)–(H4) hold. Then for any 𝑁 ∈ N+, 𝐹 and 𝐺 are linearly growing in the
variable u, i.e., there exists a positive constant 𝐶𝑁 such that, for all (𝜔, 𝑡) ∈ Ω× [0, 𝑇 ] and all u ∈ R(𝑘+1)×(𝑁+2),

|𝐹 (𝜔, 𝑡,u)| ∨ |𝐺 (𝜔, 𝑡,u)| ≤ 𝐶𝑁 (1 + |u|) ,

where the constant 𝐶𝑁 may depend on 𝑁 .

Proof. We only show the linear growth of 𝐹 for fixed 𝑁 ∈ N, and that of 𝐺 can be proved in a similar way.
Note that V(0) = 0. Then by (3.8), we know that there exists a constant 𝐶𝑁 such that for any u ∈

R(𝑘+1)×(𝑁+2),

|V(u)| ≤ 𝐶𝑁 |u| . (3.13)

By the fact W(𝜔, 𝑡,0) = 0, taking u′ = 0 in (3.9) and (3.10), we have for any 𝑙 = 0, 1, . . . , 𝑘, 𝑗 = 1, 2, . . . , 𝑁

|W𝑙,𝑗(𝜔, 𝑡,u)|2 ≤ 𝐶𝑁

𝑘∑︁
𝑛=0

(︁
|u𝑛,𝑗 |2 + |u𝑛,𝑗−1|2

)︁
.

Thus

|W(𝜔, 𝑡,u)|2 =
𝑘∑︁

𝑙=0

𝑁+1∑︁
𝑗=0

|W𝑙,𝑗(𝜔, 𝑡,u)|2 ≤ 𝐶𝑁 |u|2 . (3.14)

Similar to the calculation in Step 3 of the proof of Lemma 3.2, by the linear growth of 𝜓, we have

|𝐹𝑙,𝑗(𝜔, 𝑡,u)|2 ≤ 𝐶𝑁

𝑘∑︁
𝑛=0

(︁
1 + |u𝑛,𝑗 |2 + |V𝑛,𝑗(u)|2 + |W𝑛,𝑗(𝜔, 𝑡,u)|2 + |W𝑛,𝑗+1(𝜔, 𝑡,u)|2

)︁
≤ 𝐶𝑁

𝑘∑︁
𝑛=0

(︁
1 + |u𝑛,𝑗−1|2 + |u𝑛,𝑗 |2 + |u𝑛,𝑗+1|2

)︁
for any 𝑙 = 0, 1, . . . , 𝑘 and 𝑗 = 1, 2, . . . , 𝑁 . Therefore,

|𝐹 (𝜔, 𝑡,u)| ≤ 𝐶𝑁 (1 + |u|) .

�

By (3.2d), the initial condition of the SDE (3.6) is determined by 𝑢0 as follows:

u𝑙,𝑗(𝜔, 0) :=
𝑘∑︁

𝑚=0

𝐴𝑗,−1
𝑙𝑚

∫︁
𝐼𝑗

𝑢0(𝑥)𝜙𝑗
𝑚(𝑥) d𝑥. (3.15)

Since 𝑢0 is deterministic, we know that u(·, 0) is a deterministic matrix. Thus for any 𝑝 ≥ 1, we have

E [|u(·, 0)|𝑝] <∞. (3.16)

The following lemma is a classical result of stochastic differential equations. See e.g. [32], Chapter 3.

Lemma 3.4. If the initial value u(·, 0) is 𝐿𝑝(Ω)-integrable, and the coefficients 𝐹,𝐺 are locally Lipschitz con-
tinuous and linearly growing, then the underlying SDE admits a unique solution {u(𝑡)}0≤𝑡≤𝑇 such that for any
𝑝 ≥ 1,

E
[︂

sup
0≤𝑡≤𝑇

|u(𝑡)|𝑝
]︂
<∞. (3.17)
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Thus, by virtue of (3.16), Lemmas 3.2 and 3.3, we know that for any fixed 𝑁 ∈ N+, SDE (3.6) has a unique
solution {u(𝑡)}0≤𝑡≤𝑇 such that (3.17) holds. By the linear growth of the functions V and W (see (3.13)
and (3.14)), we get that for any 𝑝 ≥ 1,

E
[︂

sup
0≤𝑡≤𝑇

|v(𝑡)|𝑝
]︂
<∞, E

[︂
sup

0≤𝑡≤𝑇
|w(𝑡)|𝑝

]︂
<∞. (3.18)

4. Stability analysis for the fully nonlinear equations

We have known that the approximating equation (3.2) has a unique solution (𝑢ℎ, 𝑣ℎ, 𝑤ℎ) for any fixed 𝑁 ∈ N+,
where (𝑢ℎ, 𝑣ℎ, 𝑤ℎ)𝑇 (𝜔, ·, 𝑡) ∈ (𝑉ℎ)3 for each (𝜔, 𝑡) ∈ Ω×[0, 𝑇 ]. Next we show the stability result for the numerical
solutions. We first consider the nondegenerate case that 2𝛼 > 𝐶2

4 .

Theorem 4.1. Suppose that the assumptions (H1)–(H4) are satisfied. Moreover, we assume that 2𝛼 > 𝐶2
4 .

Then there exists a constant 𝐶 > 0 such that

sup
0≤𝑡≤𝑇

E
[︁
‖𝑢ℎ(·, 𝑡)‖2

]︁
+ E

[︃∫︁ 𝑇

0

‖𝑣ℎ(·, 𝑠)‖2 d𝑠

]︃
≤ 𝐶

(︁
1 + ‖𝑢ℎ(·, 0)‖2

)︁
,

where the constant 𝐶 is independent of ℎ, and depends on the terminal time 𝑇 .

Proof. For any 𝑁 ∈ N+ and (𝜔, 𝑡) ∈ Ω × [0, 𝑇 ], by setting 𝑟ℎ = 𝑢ℎ(𝜔, ·, 𝑡) in (3.2a), 𝑧ℎ = 𝑤ℎ(𝜔, ·, 𝑡) in (3.2b),
and multiplying (3.2b) with d𝑡, adding the resulting equations, we have∫︁

𝐼𝑗

𝑢ℎ(𝑥, 𝑡) d𝑢ℎ(𝑥, 𝑡) d𝑥 +
∫︁

𝐼𝑗

𝑣ℎ(𝑥, 𝑡)𝑤ℎ(𝑥, 𝑡) d𝑥 d𝑡

=
{︂∫︁

𝐼𝑗

𝜓
(︀
𝑥, 𝑡, 𝑢ℎ(𝑥, 𝑡), 𝑣ℎ(𝑥, 𝑡)

)︀
𝑢ℎ(𝑥, 𝑡) d𝑥

−
∫︁

𝐼𝑗

𝑤ℎ (𝑥, 𝑡) 𝑢ℎ𝑥(𝑥, 𝑡) d𝑥+ 𝑤+
ℎ,𝑗+ 1

2
𝑢−

ℎ,𝑗+ 1
2
− 𝑤+

ℎ,𝑗− 1
2
𝑢+

ℎ,𝑗− 1
2

−
∫︁

𝐼𝑗

𝑢ℎ (𝑥, 𝑡) 𝑤ℎ𝑥(𝑥, 𝑡) d𝑥+ 𝑢−
ℎ,𝑗+ 1

2
𝑤−

ℎ,𝑗+ 1
2
− 𝑢−

ℎ,𝑗− 1
2
𝑤+

ℎ,𝑗− 1
2

}︂
d𝑡

+
∫︁

𝐼𝑗

𝑔
(︀
𝑥, 𝑡, 𝑢ℎ(𝑥, 𝑡), 𝑣ℎ(𝑥, 𝑡)

)︀
𝑢ℎ(𝑥, 𝑡) d𝑥d𝑊𝑡,

where
𝑢±

ℎ,𝑗+ 1
2

= 𝑢ℎ

(︁
𝜔, 𝑥±

𝑗+ 1
2
, 𝑡
)︁
, 𝑤±

ℎ,𝑗+ 1
2

= 𝑤ℎ

(︁
𝜔, 𝑥±

𝑗+ 1
2
, 𝑡
)︁
.

For simplicity of notation, for 𝑗 = 1, 2, . . . , 𝑁 and piece-wisely smooth functions 𝑢 and 𝑣, we define

𝐻±
𝑗 (𝑢, 𝑣) := −

∫︁
𝐼𝑗

𝑢 (𝑥) 𝑣𝑥(𝑥) d𝑥+ 𝑢
(︁
𝑥±

𝑗+ 1
2

)︁
𝑣
(︁
𝑥−

𝑗+ 1
2

)︁
− 𝑢

(︁
𝑥±

𝑗− 1
2

)︁
𝑣
(︁
𝑥+

𝑗− 1
2

)︁
. (4.1)

Thus we have∫︁
𝐼𝑗

𝑢ℎ(𝑥, 𝑡) d𝑢ℎ(𝑥, 𝑡) d𝑥 +
∫︁

𝐼𝑗

𝑣ℎ(𝑥, 𝑡)𝑤ℎ(𝑥, 𝑡) d𝑥d𝑡

=
{︂∫︁

𝐼𝑗

𝜓
(︀
𝑥, 𝑡, 𝑢ℎ(𝑥, 𝑡), 𝑣ℎ(𝑥, 𝑡)

)︀
𝑢ℎ(𝑥, 𝑡) d𝑥

+𝐻+
𝑗

(︀
𝑤ℎ (𝜔, ·, 𝑡) , 𝑢ℎ (𝜔, ·, 𝑡)

)︀
+𝐻−

𝑗

(︀
𝑢ℎ (𝜔, ·, 𝑡) , 𝑤ℎ (𝜔, ·, 𝑡)

)︀}︂
d𝑡

+
∫︁

𝐼𝑗

𝑔
(︀
𝑥, 𝑡, 𝑢ℎ(𝑥, 𝑡), 𝑣ℎ(𝑥, 𝑡)

)︀
𝑢ℎ(𝑥, 𝑡) d𝑥d𝑊𝑡. (4.2)
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By taking 𝑝ℎ = 𝑣ℎ(𝜔, ·, 𝑡) in (3.2c), it holds that

E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝑣ℎ(𝑥, 𝑠)𝑤ℎ(𝑥, 𝑠) d𝑥d𝑠
]︂

= E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝑎
(︀
𝑥, 𝑠, 𝑢ℎ (𝑥, 𝑠) , 𝑣ℎ (𝑥, 𝑠)

)︀
|𝑣ℎ (𝑥, 𝑠)|2 d𝑥d𝑠

]︂
.

Using Itô’s formula, we have

|𝑢ℎ(𝑥, 𝑡)|2 = |𝑢ℎ(𝑥, 0)|2 + 2
∫︁ 𝑡

0

𝑢ℎ(𝑥, 𝑠) d𝑢ℎ(𝑥, 𝑠) + ⟨𝑢ℎ(𝑥, ·), 𝑢ℎ(𝑥, ·)⟩𝑡 .

Thus, after summing over 𝑗 from 1 to 𝑁 in (4.2), integrating in time from 0 to 𝑡 and taking expectation, we
have

E
[︁
‖𝑢ℎ(·, 𝑡)‖2

]︁
+ 2E

[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝑎
(︀
𝑥, 𝑠, 𝑢ℎ (𝑥, 𝑠) , 𝑣ℎ (𝑥, 𝑠)

)︀
|𝑣ℎ (𝑥, 𝑠)|2 d𝑥 d𝑠

]︂
= ‖𝑢ℎ(·, 0)‖2 + 𝒯1(𝑡) + 𝒯2(𝑡) + 𝒯3(𝑡) + 𝒯4(𝑡),

where

𝒯1(𝑡) = E
[︂∫︁ 2𝜋

0

⟨𝑢ℎ(𝑥, ·), 𝑢ℎ(𝑥, ·)⟩𝑡 d𝑥
]︂
,

𝒯2(𝑡) = 2E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝑢ℎ(𝑥, 𝑠) d𝑥 d𝑊𝑠

]︂
,

𝒯3(𝑡) = 2E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝜓
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝑢ℎ(𝑥, 𝑠) d𝑥 d𝑠

]︂
,

and

𝒯4(𝑡) = 2E

⎡⎣∫︁ 𝑡

0

𝑁∑︁
𝑗=1

{︀
𝐻+

𝑗 (𝑤ℎ (𝜔, ·, 𝑠) , 𝑢ℎ (𝜔, ·, 𝑠)) +𝐻−
𝑗

(︀
𝑢ℎ (𝜔, ·, 𝑠) , 𝑤ℎ (𝜔, ·, 𝑠)

)︀}︀
d𝑠

⎤⎦ .
The terms 𝒯𝑖(𝑡) for 𝑖 = 1, . . . , 4 are estimated as follows.

– The estimate of 𝒯1(𝑡).

In view of (3.2a) and (3.2d), we have for any 𝑟ℎ ∈ 𝑉ℎ,∫︁
𝐼𝑗

𝑟ℎ(𝑥)𝑢ℎ(𝑥, 𝑡) d𝑥 = Ξ(𝜔, 𝑡) +
∫︁ 𝑡

0

∫︁
𝐼𝑗

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝑟ℎ(𝑥) d𝑥d𝑊𝑠.

where

Ξ(𝜔, 𝑡) :=
∫︁ 𝑡

0

{︂
−
∫︁

𝐼𝑗

𝑤ℎ (𝜔, 𝑥, 𝑠) 𝑟ℎ𝑥 (𝑥) d𝑥+ ̂︀𝑤𝑗+ 1
2

(𝜔, 𝑠) 𝑟ℎ
(︁
𝑥−

𝑗+ 1
2

)︁
− ̂︀𝑤𝑗− 1

2
(𝜔, 𝑠) 𝑟ℎ

(︁
𝑥+

𝑗− 1
2

)︁
+
∫︁

𝐼𝑗

𝜓
(︀
𝜔, 𝑥, 𝑠, 𝑢ℎ(𝜔, 𝑥, 𝑠), 𝑣ℎ(𝜔, 𝑥, 𝑠)

)︀
𝑟ℎ(𝑥) d𝑥

}︂
d𝑠+

∫︁
𝐼𝑗

𝑟ℎ(𝑥)𝑢0(𝑥) d𝑥.

Note that Ξ is a continuous stochastic process with bounded total variation. By (2.5), for any continuous
semimartingale 𝑌 , we have

⟨Ξ, 𝑌 ⟩𝑡 ≡ 0,
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which leads to for any 𝑟ℎ ∈ 𝑉ℎ,∫︁
𝐼𝑗

𝑟ℎ(𝑥) ⟨𝑢ℎ(𝑥, ·), 𝑌 ⟩𝑡 d𝑥 =

⟨∫︁
𝐼𝑗

𝑟ℎ(𝑥)𝑢ℎ(𝑥, ·) d𝑥, 𝑌

⟩
𝑡

=

⟨∫︁ ·

0

∫︁
𝐼𝑗

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝑟ℎ(𝑥) d𝑥d𝑊𝑠, 𝑌

⟩
𝑡

. (4.3)

It turns out that∫︁
𝐼𝑗

⟨𝑢ℎ(𝑥, ·), 𝑢ℎ(𝑥, ·)⟩𝑡 d𝑥 =
∫︁

𝐼𝑗

⟨
𝑢ℎ(𝑥, ·),

𝑘∑︁
𝑙=0

u𝑙,𝑗(·)𝜙𝑗
𝑙 (𝑥)

⟩
𝑡

d𝑥

=
𝑘∑︁

𝑙=0

∫︁
𝐼𝑗

𝜙𝑗
𝑙 (𝑥) ⟨𝑢ℎ(𝑥, ·),u𝑙,𝑗(·)⟩𝑡 d𝑥

=
𝑘∑︁

𝑙=0

⟨∫︁ ·

0

∫︁
𝐼𝑗

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝜙𝑗

𝑙 (𝑥) d𝑥d𝑊𝑠,u𝑙,𝑗(·)

⟩
𝑡

,

where {𝜙𝑗
𝑙 , 𝑙 = 0, 1, . . . , 𝑘} is a basis of 𝑃 𝑘(𝐼𝑗).

According to (2.4) and the properties of the 𝐿2 projection, we have

∫︁
𝐼𝑗

⟨𝑢ℎ(𝑥, ·), 𝑢ℎ(𝑥, ·)⟩𝑡 d𝑥 =
𝑘∑︁

𝑙=0

∫︁ 𝑡

0

∫︁
𝐼𝑗

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝜙𝑗

𝑙 (𝑥) d𝑥 d ⟨𝑊,u𝑙,𝑗(·)⟩𝑠

=
𝑘∑︁

𝑙=0

∫︁ 𝑡

0

∫︁
𝐼𝑗

𝒫
[︀
𝑔
(︀
·, 𝑠, 𝑢ℎ(·, 𝑠), 𝑣ℎ(·, 𝑠)

)︀]︀
(𝑥)𝜙𝑗

𝑙 (𝑥) d𝑥d ⟨𝑊,u𝑙,𝑗(·)⟩𝑠

=
∫︁

𝐼𝑗

∫︁ 𝑡

0

𝑘∑︁
𝑙=0

𝒫
[︀
𝑔
(︀
·, 𝑠, 𝑢ℎ(·, 𝑠), 𝑣ℎ(·, 𝑠)

)︀]︀
(𝑥)𝜙𝑗

𝑙 (𝑥) d ⟨𝑊,u𝑙,𝑗(·)⟩𝑠 d𝑥

=
∫︁

𝐼𝑗

∫︁ 𝑡

0

𝒫
[︀
𝑔
(︀
·, 𝑠, 𝑢ℎ(·, 𝑠), 𝑣ℎ(·, 𝑠)

)︀]︀
(𝑥) d

⟨
𝑊,

𝑘∑︁
𝑙=0

u𝑙,𝑗(·)𝜙𝑗
𝑙 (𝑥)

⟩
𝑠

d𝑥

=
∫︁

𝐼𝑗

⟨∫︁ ·

0

𝒫
[︀
𝑔
(︀
·, 𝑠, 𝑢ℎ(·, 𝑠), 𝑣ℎ(·, 𝑠)

)︀]︀
(𝑥) d𝑊𝑠, 𝑢ℎ(𝑥, ·)

⟩
𝑡

d𝑥.

Since 𝒫
[︀
𝑔
(︀
·, 𝑠, 𝑢ℎ(·, 𝑠), 𝑣ℎ(·, 𝑠)

)︀]︀
∈ 𝑉ℎ for any (𝜔, 𝑠) ∈ Ω× [0, 𝑇 ], we have

𝒫
[︀
𝑔
(︀
𝜔, ·, 𝑠, 𝑢ℎ(𝜔, ·, 𝑠), 𝑣ℎ(𝜔, ·, 𝑠)

)︀]︀
(𝑥) =

𝑘∑︁
𝑙=0

g𝑙,𝑗(𝜔, 𝑠)𝜙𝑗
𝑙 (𝑥), 𝑥 ∈ 𝐼𝑗 .

By (4.3), we get

∫︁
𝐼𝑗

⟨𝑢ℎ(𝑥, ·), 𝑢ℎ(𝑥, ·)⟩𝑡 d𝑥 =
∫︁

𝐼𝑗

⟨∫︁ ·

0

𝑘∑︁
𝑙=0

g𝑙,𝑗(𝑠)𝜙𝑗
𝑙 (𝑥) d𝑊𝑠, 𝑢ℎ(𝑥, ·)

⟩
𝑡

d𝑥

=
𝑘∑︁

𝑙=0

∫︁
𝐼𝑗

𝜙𝑗
𝑙 (𝑥)

⟨
𝑢ℎ(𝑥, ·),

∫︁ ·

0

g𝑙,𝑗(𝑠) d𝑊𝑠

⟩
𝑡

d𝑥
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=
𝑘∑︁

𝑙=0

⟨∫︁ ·

0

∫︁
𝐼𝑗

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝜙𝑗

𝑙 (𝑥) d𝑥d𝑊𝑠,

∫︁ ·

0

g𝑙,𝑗(𝑠) d𝑊𝑠

⟩
𝑡

=
𝑘∑︁

𝑙=0

∫︁ 𝑡

0

∫︁
𝐼𝑗

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝜙𝑗

𝑙 (𝑥) d𝑥g𝑙,𝑗(𝑠) 𝑑 ⟨𝑊,𝑊 ⟩𝑠

=
∫︁ 𝑡

0

∫︁
𝐼𝑗

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀ 𝑘∑︁
𝑙=0

g𝑙,𝑗(𝑠)𝜙𝑗
𝑙 (𝑥) d𝑥 d𝑠

=
∫︁ 𝑡

0

∫︁
𝐼𝑗

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝒫
[︀
𝑔
(︀
·, 𝑠, 𝑢ℎ(·, 𝑠), 𝑣ℎ(·, 𝑠)

)︀]︀
(𝑥) d𝑥 d𝑠. (4.4)

After summing over 𝑗 from 1 to 𝑁 , by the Cauchy–Schwartz inequality we have∫︁ 2𝜋

0

⟨𝑢ℎ(𝑥, ·), 𝑢ℎ(𝑥, ·)⟩𝑡 d𝑥 ≤
∫︁ 𝑡

0

∫︁ 2𝜋

0

⃒⃒
𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀⃒⃒2 d𝑥d𝑠.

According to (H4), after taking expectation, we have

𝒯1(𝑡) = E
[︂∫︁ 2𝜋

0

⟨𝑢ℎ(𝑥, ·), 𝑢ℎ(𝑥, ·)⟩𝑡 d𝑥
]︂

≤ E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

⃒⃒
𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀⃒⃒2 d𝑥d𝑠
]︂

≤ 𝐶2
3E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

(︀
1 + |𝑢ℎ(𝑥, 𝑠)|2

)︀
d𝑥d𝑠

]︂
+ 𝐶2

4E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

|𝑣ℎ(𝑥, 𝑠)|2 d𝑥d𝑠
]︂

= 2𝜋𝑇𝐶2
3 + 𝐶2

3

∫︁ 𝑡

0

E
[︁
‖𝑢ℎ(·, 𝑠)‖2

]︁
d𝑠+ 𝐶2

4

∫︁ 𝑡

0

E
[︁
‖𝑣ℎ(·, 𝑠)‖2

]︁
d𝑠.

– The estimate of 𝒯2(𝑡).

From (3.17) and (3.18), we have for any fixed 𝑁 ∈ N+,

E
[︂

sup
0≤𝑠≤𝑇

{︁
‖𝑢ℎ(·, 𝑠)‖2 + ‖𝑣ℎ(·, 𝑠)‖2

}︁]︂
<∞.

Thus by (H4) and the Cauchy–Schwartz inequality we know that

E

⎡⎣(︃∫︁ 𝑇

0

⃒⃒⃒⃒∫︁ 2𝜋

0

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝑢ℎ(𝑥, 𝑠) d𝑥

⃒⃒⃒⃒2
d𝑠

)︃ 1
2
⎤⎦

≤ E

⎡⎣(︃∫︁ 𝑇

0

‖𝑢ℎ(·, 𝑠)‖2
∫︁ 2𝜋

0

⃒⃒
𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀⃒⃒2 d𝑥d𝑠

)︃ 1
2
⎤⎦

≤ 𝐶E

⎡⎣ sup
0≤𝑠≤𝑇

‖𝑢ℎ(·, 𝑠)‖

(︃∫︁ 𝑇

0

∫︁ 2𝜋

0

(︁
1 + |𝑢ℎ(𝑥, 𝑠)|2 + |𝑣ℎ(𝑥, 𝑠)|2

)︁
d𝑥d𝑠

)︃ 1
2
⎤⎦

≤ 𝐶

(︂
E
[︂

sup
0≤𝑠≤𝑇

‖𝑢ℎ(·, 𝑠)‖2
]︂)︂ 1

2
(︃

E

[︃∫︁ 𝑇

0

(︁
1 + ‖𝑢ℎ(·, 𝑠)‖2 + ‖𝑣ℎ(·, 𝑠)‖2

)︁
d𝑠

]︃)︃ 1
2

<∞.
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According to Lemma 2.1, the process{︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝑢ℎ(𝑥, 𝑠) d𝑥d𝑊𝑠, 0 ≤ 𝑡 ≤ 𝑇

}︂
is a martingale. It turns out that

𝒯2(𝑡) = 2E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝑢ℎ(𝑥, 𝑠) d𝑥 d𝑊𝑠

]︂
= 0.

– The estimate of 𝒯3(𝑡).

Note that according to (H3), for any 𝜀 > 0, it holds that∫︁ 2𝜋

0

𝜓
(︀
𝑥, 𝑡, 𝑢ℎ(𝑥, 𝑡), 𝑣ℎ(𝑥, 𝑡)

)︀
𝑢ℎ(𝑥, 𝑡) d𝑥

≤ 𝜀

2

∫︁ 2𝜋

0

⃒⃒
𝜓
(︀
𝑥, 𝑡, 𝑢ℎ(𝑥, 𝑡), 𝑣ℎ(𝑥, 𝑡)

)︀⃒⃒2 d𝑥+
1
2𝜀

∫︁ 2𝜋

0

|𝑢ℎ(𝑥, 𝑡)|2 d𝑥

≤ 𝜀

2

∫︁ 2𝜋

0

[︀
𝐵2

2 +𝐵2
2 |𝑢ℎ(𝑥, 𝑡)|2 +𝐵2

3 |𝑣ℎ(𝑥, 𝑡)|2
]︀

d𝑥+
1
2𝜀
‖𝑢ℎ(·, 𝑡)‖2

=
𝜀𝐵2

3

2
‖𝑣ℎ(·, 𝑡)‖2 + 𝜀𝜋𝐵2

2 +
(︂
𝜀𝐵2

2

2
+

1
2𝜀

)︂
‖𝑢ℎ(·, 𝑡)‖2 .

Then

𝒯3(𝑡) = 2E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝜓
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀
𝑢ℎ(𝑥, 𝑠) d𝑥d𝑠

]︂
≤ 𝜀𝐵2

3 E
[︂∫︁ 𝑡

0

‖𝑣ℎ(·, 𝑠)‖2 d𝑠
]︂

+ 2𝜀𝜋𝐵2
2𝑇 +

(︂
𝜀𝐵2

2 +
1
𝜀

)︂∫︁ 𝑡

0

E
[︁
‖𝑢ℎ(·, 𝑠)‖2

]︁
d𝑠.

– The estimate of 𝒯4(𝑡).

According to the periodicity, we have for any 𝑢, 𝑣 ∈ 𝑉ℎ,

𝑁∑︁
𝑗=1

[︂
𝐻+

𝑗 (𝑢, 𝑣) +𝐻−
𝑗 (𝑣, 𝑢)

]︂

=
𝑁∑︁

𝑗=1

(︂
− 𝑢−

𝑗+ 1
2
𝑣−

𝑗+ 1
2

+ 𝑢+
𝑗− 1

2
𝑣+

𝑗− 1
2

+ 𝑢+
𝑗+ 1

2
𝑣−

𝑗+ 1
2
− 𝑢+

𝑗− 1
2
𝑣+

𝑗− 1
2

+ 𝑣−
𝑗+ 1

2
𝑢−

𝑗+ 1
2
− 𝑣−

𝑗− 1
2
𝑢+

𝑗− 1
2

)︂

=
𝑁∑︁

𝑗=1

(︂
− 𝑢−𝑣− + 𝑢+𝑣+ + 𝑢+𝑣− − 𝑢+𝑣+ + 𝑣−𝑢− − 𝑣−𝑢+

)︂
𝑗+ 1

2

= 0. (4.5)

Thus

𝒯4(𝑡) = 2E

⎡⎣∫︁ 𝑡

0

𝑁∑︁
𝑗=1

{︀
𝐻+

𝑗

(︀
𝑤ℎ (𝜔, ·, 𝑠) , 𝑢ℎ (𝜔, ·, 𝑠)

)︀
+𝐻−

𝑗

(︀
𝑢ℎ (𝜔, ·, 𝑠) , 𝑤ℎ (𝜔, ·, 𝑠)

)︀}︀
d𝑠

⎤⎦ = 0.
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Concluding the above, we get that for any 𝜀 > 0,

E
[︁
‖𝑢ℎ(·, 𝑡)‖2

]︁
+ 2E

[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝑎
(︀
𝑥, 𝑠, 𝑢ℎ (𝑥, 𝑠) , 𝑣ℎ (𝑥, 𝑠)

)︀
|𝑣ℎ (𝑥, 𝑠)|2 d𝑥d𝑠

]︂
≤ E

[︁
‖𝑢ℎ(·, 0)‖2

]︁
+ 2𝜋𝑇𝐶2

3 + 2𝜀𝜋𝐵2
2𝑇 +

(︂
𝐶2

3 + 𝜀𝐵2
2 +

1
𝜀

)︂∫︁ 𝑡

0

E
[︁
‖𝑢ℎ(·, 𝑠)‖2

]︁
d𝑠

+
(︀
𝐶2

4 + 𝜀𝐵2
3

)︀
E
[︂∫︁ 𝑡

0

‖𝑣ℎ(·, 𝑠)‖2 d𝑠
]︂
. (4.6)

By (H2) we know that 𝑎(𝜔, 𝑥, 𝑠, 𝑢, 𝑣) ≥ 𝛼. Since 2𝛼 > 𝐶2
4 , we take

𝜀 :=
1
𝐵2

3

(︂
𝛼− 1

2
𝐶2

4

)︂
> 0.

Then there exists a positive constant 𝐶 which is independent of ℎ, such that for any 𝑡 ∈ [0, 𝑇 ],

E
[︁
‖𝑢ℎ(·, 𝑡)‖2

]︁
+
(︂
𝛼− 1

2
𝐶2

4

)︂
E
[︂∫︁ 𝑡

0

‖𝑣ℎ(·, 𝑠)‖2 d𝑠
]︂
≤ ‖𝑢ℎ(·, 0)‖2 + 𝐶 + 𝐶

∫︁ 𝑡

0

E
[︁
‖𝑢ℎ(·, 𝑠)‖2

]︁
d𝑠.

Using Gronwall’s inequality, we have for any 𝑡 ∈ [0, 𝑇 ],

E
[︁
‖𝑢ℎ(·, 𝑡)‖2

]︁
+ E

[︂∫︁ 𝑡

0

‖𝑣ℎ(·, 𝑠)‖2 d𝑠
]︂
≤ 𝐶

(︁
1 + ‖𝑢ℎ(·, 0)‖2

)︁
𝑒𝐶𝑡.

This completes the proof. �

Our above stability result does not involve the regularity of the solution of the original SPDEs, and applies to
the degenerate case of 2𝛼 = 𝐶2

4 . In particular, it applies to the special case of 𝛼 = 0, as long as the constants 𝐶4

and 𝐵3 vanish. When the function 𝜓 is uniformly bounded with respect to the last argument, as an immediate
consequence of (4.6) with 𝜀 = 1, we have the following stability result for the degenerate case.

Theorem 4.2. If the assumptions (H1)–(H4) hold with 2𝛼 = 𝐶2
4 and 𝐵3 = 0, then there exists a constant

𝐶 > 0 such that
sup

0≤𝑡≤𝑇
E
[︁
‖𝑢ℎ(·, 𝑡)‖2

]︁
≤ 𝐶

(︁
1 + ‖𝑢ℎ(·, 0)‖2

)︁
,

where the constant 𝐶 is independent of ℎ and depends on the terminal time 𝑇 .

Remark 4.3. The inequality 2𝛼 ≥ 𝐶2
4 , used to derive our stability of the numerical schemes, is the so-called

stochastic parabolicity, which is crucial in the theory of parabolic SPDEs (see e.g. [37, 39]). The numerical
experiments in Section 7 also illustrate its necessity.

Remark 4.4. Following the ideas in [26, 30], we can extend our method to the more general SPDEs with a
nonlinear convection term 𝑓(·):⎧⎪⎪⎨⎪⎪⎩

d𝑢 =
{︁[︀
𝑎(·, 𝑥, 𝑡, 𝑢, 𝑢𝑥)𝑢𝑥

]︀
𝑥
− 𝑓(𝑢)𝑥 + 𝜓(·, 𝑥, 𝑡, 𝑢, 𝑢𝑥)

}︁
d𝑡+ 𝑔(·, 𝑥, 𝑡, 𝑢, 𝑢𝑥) d𝑊𝑡,

(𝑥, 𝑡) ∈ [0, 2𝜋]× (0, 𝑇 ];
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [0, 2𝜋],

where 𝑓(·) is locally Lipschitz continuous and can be super-linearly growing, such as 𝑓(𝑢) = 𝑢2

2 considered in
Section 7.3. Using the monotone numerical flux for the nonlinear convection term 𝑓(·), we can also get similar
stability results even for the degenerate case. A numerical test is reported for the stochastic viscous Burgers
equation in Section 7.3.



S206 LI, SHU AND TANG

5. Optimal error estimates for semilinear equations

In this section, we consider the convergence of numerical methods for strong solutions with enough smoothness
and integrability. We prove the optimal error estimates (𝒪(ℎ𝑘+1)) for the following semi-linear SPDE :{︃

d𝑢 =
[︀
𝑎 𝑢𝑥𝑥 + 𝜓(·, 𝑥, 𝑡, 𝑢, 𝑢𝑥)

]︀
d𝑡+ 𝑔(·, 𝑥, 𝑡, 𝑢, 𝑢𝑥) d𝑊𝑡, (𝑥, 𝑡) ∈ [0, 2𝜋]× (0, 𝑇 ];

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [0, 2𝜋]
(5.1)

when the leading coefficient 𝑎 is a positive constant. We rewrite (5.1) as follows:⎧⎪⎨⎪⎩
d𝑢 =

[︀
𝑎 𝑣𝑥 + 𝜓(·, 𝑥, 𝑡, 𝑢, 𝑣)

]︀
d𝑡+ 𝑔(·, 𝑥, 𝑡, 𝑢, 𝑣) d𝑊𝑡, (𝑥, 𝑡) ∈ [0, 2𝜋]× (0, 𝑇 ];

𝑣(𝑥, 𝑡) = 𝑢𝑥(𝑥, 𝑡), (𝑥, 𝑡) ∈ [0, 2𝜋]× (0, 𝑇 ];
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [0, 2𝜋].

(5.2)

From (3.2c), we have that 𝑤ℎ = 𝑎 𝑣ℎ. Then the LDG method (3.2) is written as follows. For any (𝜔, 𝑡) ∈
Ω× [0, 𝑇 ], find 𝑢ℎ(𝜔, ·, 𝑡), 𝑣ℎ(𝜔, ·, 𝑡) ∈ 𝑉ℎ such that for any 𝑟ℎ, 𝑧ℎ ∈ 𝑉ℎ,∫︁

𝐼𝑗

𝑟ℎ(𝑥) d𝑢ℎ(𝜔, 𝑥, 𝑡) d𝑥 =
[︂
𝑎𝐻+

𝑗 (𝑣ℎ(𝜔, ·, 𝑡), 𝑟ℎ) +
∫︁

𝐼𝑗

𝜓
(︀
𝜔, 𝑥, 𝑡, 𝑢ℎ(𝜔, 𝑥, 𝑡), 𝑣ℎ(𝜔, 𝑥, 𝑡)

)︀
𝑟ℎ(𝑥) d𝑥

]︂
d𝑡

+
∫︁

𝐼𝑗

𝑔
(︀
𝜔, 𝑥, 𝑡, 𝑢ℎ(𝜔, 𝑥, 𝑡), 𝑣ℎ(𝜔, 𝑥, 𝑡)

)︀
𝑟ℎ(𝑥) d𝑥d𝑊𝑡, (5.3a)∫︁

𝐼𝑗

𝑣ℎ(𝜔, 𝑥, 𝑡)𝑧ℎ(𝑥) d𝑥 = 𝐻−
𝑗 (𝑢ℎ(𝜔, ·, 𝑡), 𝑧ℎ), (5.3b)

where the bilinear functionals 𝐻±
𝑗 are defined by (4.1). Then, we state the error estimates of the semi-discrete

LDG scheme (5.3).

Theorem 5.1. Suppose that 𝑢0 ∈ 𝐻𝑘+1, assumptions (H3) and (H4) hold with 2𝑎 > 𝐶2
2 , and equation (5.1)

has a unique strong solution 𝑢 such that

(H5) 𝑢 ∈ 𝐿2
(︀
Ω× [0, 𝑇 ];𝐻𝑘+3

)︀⋂︀
𝒮2
(︀
Ω× [0, 𝑇 ];𝐿2

)︀⋂︀
𝐿∞

(︀
0, 𝑇 ;𝐿2(Ω;𝐻𝑘+1)

)︀
;

(H6) 𝜓 (·, 𝑢(·), 𝑢𝑥(·)) , 𝑔 (·, 𝑢(·), 𝑢𝑥(·)) ∈ 𝐿2
(︀
Ω× [0, 𝑇 ];𝐻𝑘+1

)︀
.

Then, there is a positive constant 𝐶 such that

sup
𝑡∈[0,𝑇 ]

(︁
E
[︁
‖𝑢(·, 𝑡)− 𝑢ℎ(·, 𝑡)‖2

]︁)︁ 1
2

+

(︃
E

[︃∫︁ 𝑇

0

‖𝑢𝑥(·, 𝑠)− 𝑣ℎ(·, 𝑠)‖2 d𝑠

]︃)︃ 1
2

≤ 𝐶ℎ𝑘+1,

where the constant 𝐶 is independent of ℎ and depends on the terminal time 𝑇 and the exact solution 𝑢.

Proof. Note that the scheme (5.3) is also satisfied when the numerical solution (𝑢ℎ(·), 𝑣ℎ(·)) is replaced with
the exact solution (𝑢(·), 𝑣(·)): for any (𝜔, 𝑡) ∈ Ω× [0, 𝑇 ] and 𝑟ℎ, 𝑧ℎ ∈ 𝑉ℎ, we have∫︁

𝐼𝑗

𝑟ℎ(𝑥) d𝑢(·, 𝑥, 𝑡) d𝑥 = 𝑎𝐻+
𝑗 (𝑣(·, ·, 𝑡), 𝑟ℎ) d𝑡+

∫︁
𝐼𝑗

𝜓
(︀
·, 𝑥, 𝑡, 𝑢(·, 𝑥, 𝑡), 𝑣(·, 𝑥, 𝑡)

)︀
𝑟ℎ(𝑥) d𝑥 d𝑡

+
∫︁

𝐼𝑗

𝑔
(︀
·, 𝑥, 𝑡, 𝑢(·, 𝑥, 𝑡), 𝑣(·, 𝑥, 𝑡)

)︀
𝑟ℎ(𝑥) d𝑥d𝑊𝑡,∫︁

𝐼𝑗

𝑣(𝜔, 𝑥, 𝑡)𝑧ℎ(𝑥) d𝑥 = 𝐻−
𝑗 (𝑢(𝜔, ·, 𝑡), 𝑧ℎ).
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Define

𝑒𝑢(𝜔, 𝑥, 𝑡) := (𝑢− 𝑢ℎ)(𝜔, 𝑥, 𝑡) = (𝜉𝑢 − 𝜂𝑢)(𝜔, 𝑥, 𝑡),

and

𝑒𝑣(𝜔, 𝑥, 𝑡) := (𝑣 − 𝑣ℎ)(𝜔, 𝑥, 𝑡) = (𝜉𝑣 − 𝜂𝑣)(𝜔, 𝑥, 𝑡)

with

𝜉𝑢(𝜔, 𝑥, 𝑡) := (𝒬𝑢− 𝑢ℎ)(𝜔, 𝑥, 𝑡), 𝜂𝑢(𝜔, 𝑥, 𝑡) := (𝒬𝑢− 𝑢)(𝜔, 𝑥, 𝑡)

and

𝜉𝑣(𝜔, 𝑥, 𝑡) := (ℛ𝑣 − 𝑣ℎ)(𝜔, 𝑥, 𝑡), 𝜂𝑣(𝜔, 𝑥, 𝑡) := (ℛ𝑣 − 𝑣)(𝜔, 𝑥, 𝑡),

where ℛ and 𝒬 are the projections from 𝐻𝑘+1 onto 𝑉ℎ defined in Section 2.
Then the error equation is∫︁

𝐼𝑗

𝑟ℎ(𝑥)𝑑𝑒𝑢(𝑥, 𝑡) d𝑥 =
{︂
𝑎𝐻+

𝑗 (𝑒𝑣(·, 𝑡), 𝑟ℎ) +
∫︁

𝐼𝑗

[︂
𝜓
(︀
·, 𝑢, 𝑣

)︀
− 𝜓

(︀
·, 𝑢ℎ, 𝑣ℎ

)︀]︂
(𝑥, 𝑡) 𝑟ℎ(𝑥) d𝑥

}︂
d𝑡

+
∫︁

𝐼𝑗

[︂
𝑔
(︀
𝑥, 𝑡, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)

)︀
− 𝑔
(︀
𝑥, 𝑡, 𝑢ℎ(𝑥, 𝑡), 𝑣ℎ(𝑥, 𝑡)

)︀]︂
𝑟ℎ(𝑥) d𝑥 d𝑊𝑡, (5.4a)∫︁

𝐼𝑗

𝑒𝑣(𝑥, 𝑡)𝑧ℎ(𝑥) d𝑥 = 𝐻−
𝑗 (𝑒𝑢(·, 𝑡), 𝑧ℎ). (5.4b)

Taking 𝑟ℎ = 𝜉𝑢(𝜔, ·, 𝑡) in (5.4a) and 𝑧ℎ = 𝑎 𝜉𝑣(𝜔, ·, 𝑡) in (5.4b), we have∫︁
𝐼𝑗

𝜉𝑢(𝑥, 𝑡)𝑑𝜉𝑢(𝑥, 𝑡) d𝑥+ 𝑎

∫︁
𝐼𝑗

|𝜉𝑣(𝑥, 𝑡)|2 d𝑥 d𝑡

=
∫︁

𝐼𝑗

𝜉𝑢(𝑥, 𝑡)𝑑𝜂𝑢(𝑥, 𝑡) d𝑥+ 𝑎

∫︁
𝐼𝑗

𝜂𝑣(𝑥, 𝑡)𝜉𝑣(𝑥, 𝑡) d𝑥d𝑡

+ 𝑎

[︂
𝐻+

𝑗

(︀
𝜉𝑣(·, 𝑡), 𝜉𝑢(·, 𝑡)

)︀
−𝐻+

𝑗

(︀
𝜂𝑣(·, 𝑡), 𝜉𝑢(·, 𝑡)

)︀]︂
d𝑡

+
∫︁

𝐼𝑗

[︂
𝜓
(︀
𝑥, 𝑡, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)

)︀
− 𝜓

(︀
𝑥, 𝑡, 𝑢ℎ(𝑥, 𝑡), 𝑣ℎ(𝑥, 𝑡)

)︀]︂
𝜉𝑢(𝑥, 𝑡) d𝑥 d𝑡

+ 𝑎

[︂
𝐻−

𝑗

(︀
𝜉𝑢(·, 𝑡), 𝜉𝑣(·, 𝑡)

)︀
−𝐻−

𝑗

(︀
𝜂𝑢(·, 𝑡), 𝜉𝑣(·, 𝑡)

)︀]︂
d𝑡

+
∫︁

𝐼𝑗

[︂
𝑔
(︀
𝑥, 𝑡, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)

)︀
− 𝑔
(︀
𝑥, 𝑡, 𝑢ℎ(𝑥, 𝑡), 𝑣ℎ(𝑥, 𝑡)

)︀]︂
𝜉𝑢(𝑥, 𝑡) d𝑥 d𝑊𝑡.

Using the Itô’s formula, we have

𝑑 |𝜉𝑢(𝑥, 𝑡)|2 = 2𝜉𝑢(𝑥, 𝑡) 𝑑𝜉𝑢(𝑥, 𝑡) + 𝑑 ⟨𝜉𝑢(𝑥, ·), 𝜉𝑢(𝑥, ·)⟩𝑡 .

Then, we have

E
[︁
‖𝜉𝑢(·, 𝑡)‖2

]︁
+ 2𝑎E

[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

|𝜉𝑣(𝑥, 𝑠)|2 d𝑥d𝑠
]︂

= ‖𝜉𝑢(·, 0)‖2 + 𝒯1(𝑡) + 𝒯2(𝑡) + 𝒯3(𝑡) + 𝒯4(𝑡) + 𝒯5(𝑡) + 𝒯6(𝑡) + 𝒯7(𝑡)
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where

𝒯1(𝑡) := 2E
[︂∫︁ 2𝜋

0

∫︁ 𝑡

0

𝜉𝑢(𝑥, 𝑠)𝑑𝜂𝑢(𝑥, 𝑠) d𝑥
]︂
,

𝒯2(𝑡) := E
[︂∫︁ 2𝜋

0

⟨𝜉𝑢(𝑥, ·), 𝜉𝑢(𝑥, ·)⟩𝑡 d𝑥
]︂
,

𝒯3(𝑡) := 2𝑎E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝜂𝑣(𝑥, 𝑠)𝜉𝑣(𝑥, 𝑠) d𝑥d𝑠
]︂
,

𝒯4(𝑡) := 2𝑎E

⎡⎣∫︁ 𝑡

0

𝑁∑︁
𝑗=1

[︀
𝐻+

𝑗

(︀
𝜉𝑣(·, 𝑠), 𝜉𝑢(·, 𝑠)

)︀
+𝐻−

𝑗

(︀
𝜉𝑢(·, 𝑠), 𝜉𝑣(·, 𝑠)

)︀]︀
d𝑠

⎤⎦ ,
𝒯5(𝑡) := −2𝑎E

⎡⎣∫︁ 𝑡

0

𝑁∑︁
𝑗=1

[︀
𝐻+

𝑗

(︀
𝜂𝑣(·, 𝑠), 𝜉𝑢(·, 𝑠)

)︀
+𝐻−

𝑗

(︀
𝜂𝑢(·, 𝑠), 𝜉𝑣(·, 𝑠)

)︀]︀
d𝑠

⎤⎦ ,
𝒯6(𝑡) := 2E

[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

[︀
𝜓 (𝑥, 𝑠, 𝑢(𝑥, 𝑠), 𝑣(𝑥, 𝑠))− 𝜓 (𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠))

]︀
𝜉𝑢(𝑥, 𝑠) d𝑥d𝑠

]︂
,

and

𝒯7(𝑡) := 2E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

[︀
𝑔 (𝑥, 𝑠, 𝑢(𝑥, 𝑠), 𝑣(𝑥, 𝑠))− 𝑔 (𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠))

]︀
𝜉𝑢(𝑥, 𝑠) d𝑥 d𝑊𝑠

]︂
.

The terms 𝒯𝑖(𝑡) for 𝑖 = 1, . . . , 7 are estimated as follows.

– The estimate of 𝒯1(𝑡).

In view of (5.1), we have

𝑑𝑡(𝒬𝑢)(·, 𝑡) = 𝒬(𝑑𝑡𝑢)(·, 𝑡)
= 𝒬 [𝑎 𝑢𝑥𝑥(·, 𝑡)] d𝑡+𝒬 [𝜓(·, 𝑡, 𝑢(·, 𝑡), 𝑢𝑥(·, 𝑡))] d𝑡+𝒬 [𝑔(·, 𝑡, 𝑢(·, 𝑡), 𝑢𝑥(·, 𝑡))] d𝑊𝑡.

(5.5)

Therefore,

𝑑𝜂𝑢(·, 𝑡) = 𝑎(𝒬𝑢𝑥𝑥 − 𝑢𝑥𝑥)(·, 𝑡) d𝑡+ (𝒬− ℐ)𝜓(·, 𝑡, 𝑢(·, 𝑡), 𝑢𝑥(·, 𝑡)) d𝑡
+(𝒬− ℐ)𝑔(·, 𝑡, 𝑢(·, 𝑡), 𝑢𝑥(·, 𝑡)) d𝑊𝑡

with ℐ being the identity operator.
It turns out that∫︁ 2𝜋

0

𝜉𝑢(𝑥, 𝑡) 𝑑𝜂𝑢(𝑥, 𝑡) d𝑥 =
∫︁ 2𝜋

0

𝜉𝑢(𝑥, 𝑡)
{︁
𝑎
[︀
𝒬𝑢𝑥𝑥 − 𝑢𝑥𝑥

]︀
(𝑥, 𝑡) + (𝒬− ℐ)

[︀
𝜓(·, 𝑡, 𝑢(·, 𝑡), 𝑢𝑥(·, 𝑡))

]︀
(𝑥)
}︁

d𝑥 d𝑡

+
∫︁ 2𝜋

0

𝜉𝑢(𝑥, 𝑡) (𝒬− ℐ)
[︀
𝑔(·, 𝑡, 𝑢(·, 𝑡), 𝑢𝑥(·, 𝑡))

]︀
(𝑥) d𝑥 d𝑊𝑡.

According to Lemma 2.1, by virtue of (3.17), 𝑔 (·, 𝑢(·), 𝑢𝑥(·)) ∈ 𝐿2
(︀
Ω× [0, 𝑇 ];𝐿2

)︀
and 𝑢(·) ∈

𝒮2
(︀
Ω× [0, 𝑇 ];𝐿2

)︀
, we get that the process∫︁ 𝑡

0

∫︁ 2𝜋

0

𝜉𝑢(𝑥, 𝑠) (𝒬− ℐ)
[︀
𝑔(·, 𝑠, 𝑢(·, 𝑠), 𝑢𝑥(·, 𝑠))

]︀
(𝑥) d𝑥d𝑊𝑠, 0 ≤ 𝑡 ≤ 𝑇
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is a martingale. Thus according to the property of the projection (2.3), we have

𝒯1(𝑡) = 2𝑎E
[︂ ∫︁ 𝑡

0

∫︁ 2𝜋

0

𝜉𝑢(𝑥, 𝑠)
[︀
𝒬𝑢𝑥𝑥 − 𝑢𝑥𝑥

]︀
(𝑥, 𝑠) d𝑥d𝑠

]︂
+ 2E

[︂ ∫︁ 𝑡

0

∫︁ 2𝜋

0

𝜉𝑢(𝑥, 𝑠) (𝒬− ℐ)
[︀
𝜓(·, 𝑠, 𝑢(·, 𝑠), 𝑢𝑥(·, 𝑠))

]︀
(𝑥) d𝑥d𝑠

]︂
≤ 𝑎E

[︂∫︁ 𝑡

0

(︁
‖𝜉𝑢 (·, 𝑠)‖2 + ‖(𝒬𝑢𝑥𝑥 − 𝑢𝑥𝑥) (·, 𝑠)‖2

)︁
d𝑠
]︂

+ E
[︂∫︁ 𝑡

0

(︁
‖𝜉𝑢 (·, 𝑠)‖2 +

⃦⃦⃦
(𝒬− ℐ)𝜓(·, 𝑠, 𝑢(·, 𝑠), 𝑢𝑥(·, 𝑠))

⃦⃦⃦2)︁
d𝑠
]︂

≤ 𝐶

∫︁ 𝑡

0

E ‖𝜉𝑢 (·, 𝑠)‖2 d𝑠+ 𝐶ℎ2𝑘+2E
[︂∫︁ 𝑡

0

‖𝑢𝑥𝑥 (·, 𝑠)‖2𝐻𝑘+1 d𝑠
]︂

+𝐶ℎ2𝑘+2E
[︂∫︁ 𝑡

0

‖𝜓(·, 𝑠, 𝑢(·, 𝑠), 𝑢𝑥(·, 𝑠))‖2𝐻𝑘+1 d𝑠
]︂
.

Since
𝑢 ∈ 𝐿2

(︀
Ω× [0, 𝑇 ];𝐻𝑘+3

)︀
, 𝜓 (·, 𝑢(·), 𝑢𝑥(·)) ∈ 𝐿2

(︀
Ω× [0, 𝑇 ];𝐻𝑘+1

)︀
,

we have

𝒯1(𝑡) ≤ 𝐶

∫︁ 𝑡

0

E ‖𝜉𝑢 (·, 𝑠)‖2 d𝑠+ 𝐶ℎ2𝑘+2E
[︂∫︁ 𝑡

0

‖𝑢 (·, 𝑠)‖2𝐻𝑘+3 d𝑠
]︂

+𝐶ℎ2𝑘+2E
[︂∫︁ 𝑡

0

‖𝜓(·, 𝑠, 𝑢(·, 𝑠), 𝑢𝑥(·, 𝑠))‖2𝐻𝑘+1 d𝑠
]︂

≤ 𝐶

∫︁ 𝑡

0

E ‖𝜉𝑢 (·, 𝑠)‖2 d𝑠+ 𝐶 ℎ2𝑘+2.

– The estimate of 𝒯2(𝑡).

In view of (5.5), we have that for any 𝑟ℎ ∈ 𝑉ℎ,∫︁
𝐼𝑗

𝑟ℎ(𝑥)𝑑𝒬𝑢(𝑥, 𝑡) d𝑥 =
∫︁

𝐼𝑗

𝑟ℎ(𝑥)
{︁
𝒬
[︀
𝑎 𝑢𝑥𝑥(·, 𝑡)

]︀
(𝑥) +𝒬

[︀
𝜓(·, 𝑡, 𝑢(·, 𝑡), 𝑣(·, 𝑡))

]︀
(𝑥)
}︁

d𝑥 d𝑡

+
∫︁

𝐼𝑗

𝑟ℎ(𝑥)𝒬
[︀
𝑔(·, 𝑡, 𝑢(·, 𝑡), 𝑣(·, 𝑡))

]︀
(𝑥) d𝑥d𝑊𝑡. (5.6)

From (5.3a) and (5.6), we obtain that for any 𝑟ℎ ∈ 𝑉ℎ,∫︁
𝐼𝑗

𝑟ℎ(𝑥)𝑑𝜉𝑢(𝑥, 𝑡) d𝑥 =
{︂
𝑎

∫︁
𝐼𝑗

𝑟ℎ(𝑥)𝒬
[︀
𝑢𝑥𝑥(·, 𝑡)

]︀
(𝑥) d𝑥− 𝑎𝐻+

𝑗 (𝑣ℎ(·, 𝑡), 𝑟ℎ)

+
∫︁

𝐼𝑗

𝑟ℎ(𝑥)
{︀
𝒬
[︀
𝜓(·, 𝑡, 𝑢(·, 𝑡), 𝑣(·, 𝑡))

]︀
− 𝜓

(︀
·, 𝑡, 𝑢ℎ(·, 𝑡), 𝑣ℎ(·, 𝑡)

)︀}︀
(𝑥) d𝑥

}︂
d𝑡

+
∫︁

𝐼𝑗

𝑟ℎ(𝑥)
{︀
𝒬
[︀
𝑔(·, 𝑡, 𝑢(·, 𝑡), 𝑣(·, 𝑡))

]︀
− 𝑔
(︀
·, 𝑡, 𝑢ℎ(·, 𝑡), 𝑣ℎ(·, 𝑡)

)︀}︀
(𝑥) d𝑥d𝑊𝑡. (5.7)

Since 𝜉𝑢(𝜔, ·, 𝑡) ∈ 𝑉ℎ for any (𝜔, 𝑡) ∈ Ω× [0, 𝑇 ], 𝜉𝑢 should have the form

𝜉𝑢(𝜔, 𝑥, 𝑡) =
𝑘∑︁

𝑙=0

𝜉𝑢
𝑙,𝑗(𝜔, 𝑡)𝜙𝑗

𝑙 (𝑥), 𝑥 ∈ 𝐼𝑗 .



S210 LI, SHU AND TANG

Similar to (4.4), we have from (5.7) that∫︁
𝐼𝑗

⟨𝜉𝑢(𝑥, ·), 𝜉𝑢(𝑥, ·)⟩𝑡 d𝑥 =
∫︁ 𝑡

0

∫︁
𝐼𝑗

(︂
𝒫
{︀
𝒬
[︀
𝑔(·, 𝑠, 𝑢(·, 𝑠), 𝑣(·, 𝑠))

]︀
− 𝑔
(︀
·, 𝑠, 𝑢ℎ(·, 𝑠), 𝑣ℎ(·, 𝑠)

)︀}︀
(𝑥)

×
{︀
𝒬
[︀
𝑔(·, 𝑠, 𝑢(·, 𝑠), 𝑣(·, 𝑠))

]︀
− 𝑔
(︀
·, 𝑠, 𝑢ℎ(·, 𝑠), 𝑣ℎ(·, 𝑠)

)︀}︀
(𝑥)
)︂

d𝑥d𝑠

≤
∫︁ 𝑡

0

∫︁
𝐼𝑗

⃒⃒
𝒬
[︀
𝑔(·, 𝑠, 𝑢(·, 𝑠), 𝑣(·, 𝑠))

]︀
− 𝑔
(︀
·, 𝑠, 𝑢ℎ(·, 𝑠), 𝑣ℎ(·, 𝑠)

)︀⃒⃒2(𝑥) d𝑥 d𝑠.

Then, we have for any 𝜀 > 0,

𝒯2(𝑡) = E
[︂∫︁ 2𝜋

0

⟨𝜉𝑢(𝑥, ·), 𝜉𝑢(𝑥, ·)⟩𝑡 d𝑥
]︂

≤ E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

⃒⃒
𝒬
[︀
𝑔(·, 𝑠, 𝑢(·, 𝑠), 𝑣(·, 𝑠))

]︀
− 𝑔
(︀
·, 𝑠, 𝑢ℎ(·, 𝑠), 𝑣ℎ(·, 𝑠)

)︀⃒⃒2(𝑥) d𝑥d𝑠
]︂

≤
(︂

1 +
1
𝜀

)︂
E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

⃒⃒
(𝒬− ℐ) 𝑔(·, 𝑠, 𝑢(·, 𝑠), 𝑣(·, 𝑠))

⃒⃒2(𝑥) d𝑥d𝑠
]︂

+ (1 + 𝜀) E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

⃒⃒
𝑔
(︀
𝑥, 𝑠, 𝑢(𝑥, 𝑠), 𝑣(𝑥, 𝑠)

)︀
− 𝑔
(︀
𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠)

)︀⃒⃒2 d𝑥d𝑠
]︂
.

According to (H4) and the property of the projection, we have

𝒯2(𝑡) ≤
(︂

1 +
1
𝜀

)︂
ℎ2𝑘+2E

[︂∫︁ 𝑡

0

‖𝑔(·, 𝑠, 𝑢(·, 𝑠), 𝑣(·, 𝑠))‖2𝐻𝑘+1 d𝑠
]︂

+ (1 + 𝜀) E
∫︁ 𝑡

0

∫︁ 2𝜋

0

[︂
𝐶2

1

(︂
1 +

1
𝜀

)︂
|𝑒𝑢(𝑥, 𝑠)|2 + 𝐶2

2 (1 + 𝜀) |𝑒𝑣(𝑥, 𝑠)|2
]︂

d𝑥d𝑠

≤
(︂

1 +
1
𝜀

)︂
ℎ2𝑘+2E

[︂∫︁ 𝑡

0

‖𝑔(·, 𝑠, 𝑢(·, 𝑠), 𝑣(·, 𝑠))‖2𝐻𝑘+1 d𝑠
]︂

+ 2 (1 + 𝜀)
(︂

1 +
1
𝜀

)︂
𝐶2

1E
∫︁ 𝑡

0

[︁
𝐶ℎ2𝑘+2 ‖𝑢(·, 𝑠)‖2𝐻𝑘+1 + ‖𝜉𝑢(·, 𝑠)‖2

]︁
d𝑠

+ (1 + 𝜀)2
(︂

1 +
1
𝜀

)︂
𝐶2

2E
[︂∫︁ 𝑡

0

𝐶ℎ2𝑘+2 ‖𝑣(·, 𝑠)‖2𝐻𝑘+1 d𝑠
]︂

+ (1 + 𝜀)3 𝐶2
2E
[︂∫︁ 𝑡

0

‖𝜉𝑣(·, 𝑠)‖2 d𝑠
]︂
.

Since 𝑢 ∈ 𝐿2
(︀
Ω× [0, 𝑇 ];𝐻𝑘+3

)︀
, we have

𝑣 = 𝑢𝑥 ∈ 𝐿2
(︀
Ω× [0, 𝑇 ];𝐻𝑘+2

)︀
⊆ 𝐿2

(︀
Ω× [0, 𝑇 ];𝐻𝑘+1

)︀
,

which yields that

𝒯2(𝑡) ≤ 𝐶

(︂
1 +

1
𝜀

)︂[︀
1 + (1 + 𝜀) + (1 + 𝜀)2

]︀
ℎ2𝑘+2

+𝐶 (1 + 𝜀)
(︂

1 +
1
𝜀

)︂∫︁ 𝑡

0

E
[︁
‖𝜉𝑢(·, 𝑠)‖2

]︁
d𝑠+ (1 + 𝜀)3 𝐶2

2E
[︂∫︁ 𝑡

0

‖𝜉𝑣(·, 𝑠)‖2 d𝑠
]︂
.

Since 2𝑎 > 𝐶2
2 , taking

𝜀 :=
(︂

2𝑎+ 𝐶2
2

2𝐶2
2

)︂ 1
3

− 1 > 0,
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we have

𝒯2(𝑡) ≤ 𝐶ℎ2𝑘+2 + 𝐶

∫︁ 𝑡

0

E
[︁
‖𝜉𝑢(·, 𝑠)‖2

]︁
d𝑠+

(︂
𝑎+

1
2
𝐶2

2

)︂
E
[︂∫︁ 𝑡

0

‖𝜉𝑣(·, 𝑠)‖2 d𝑠
]︂
.

– The estimate of 𝒯3(𝑡).

Since 𝑣 ∈ 𝐿2
(︀
Ω× [0, 𝑇 ];𝐻𝑘+1

)︀
, we have

𝒯3(𝑡) = 2𝑎E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

𝜂𝑣(𝑥, 𝑠)𝜉𝑣(𝑥, 𝑠) d𝑥d𝑠
]︂

≤ 4𝑎2

2𝑎− 𝐶2
2

E
[︂∫︁ 𝑡

0

‖𝜂𝑣(·, 𝑠)‖2 d𝑠
]︂

+
2𝑎− 𝐶2

2

4
E
[︂∫︁ 𝑡

0

‖𝜉𝑣(·, 𝑠)‖2 d𝑠
]︂

≤ 4𝑎2

2𝑎− 𝐶2
2

𝐶ℎ2𝑘+2E
[︂∫︁ 𝑡

0

‖𝑣(·, 𝑠)‖2𝐻𝑘+1 d𝑠
]︂

+
2𝑎− 𝐶2

2

4
E
[︂∫︁ 𝑡

0

‖𝜉𝑣(·, 𝑠)‖2 d𝑠
]︂

≤ 𝐶ℎ2𝑘+2 +
2𝑎− 𝐶2

2

4
E
[︂∫︁ 𝑡

0

‖𝜉𝑣(·, 𝑠)‖2 d𝑠
]︂
.

– The estimate of 𝒯4(𝑡).

In view of (4.5), we see that for any 𝑢, 𝑣 ∈ 𝑉ℎ,

𝑁∑︁
𝑗=1

[︂
𝐻+

𝑗 (𝑢, 𝑣) +𝐻−
𝑗 (𝑣, 𝑢)

]︂
= 0.

Therefore,

𝒯4(𝑡) = 2𝑎E

⎡⎣∫︁ 𝑡

0

𝑁∑︁
𝑗=1

[︀
𝐻+

𝑗

(︀
𝜉𝑣(·, 𝑠), 𝜉𝑢(·, 𝑠)

)︀
+𝐻−

𝑗

(︀
𝜉𝑢(·, 𝑠), 𝜉𝑣(·, 𝑠)

)︀]︀
d𝑠

⎤⎦ = 0.

– The estimate of 𝒯5(𝑡).

By the definition of the projections 𝒬 and ℛ (see (2.1) and (2.2)), we see that for any (𝜔, 𝑠) ∈ Ω × [0, 𝑇 ],
𝑗 = 1, 2, . . . , 𝑁 , and 𝑟ℎ, 𝑧ℎ ∈ 𝑉ℎ,

𝐻−
𝑗

(︀
𝜂𝑢(·, 𝑠), 𝑟ℎ

)︀
= 0, 𝐻+

𝑗

(︀
𝜂𝑣(·, 𝑠), 𝑧ℎ

)︀
= 0.

Since 𝜉𝑢(𝜔, ·, 𝑠), 𝜉𝑣(𝜔, ·, 𝑠) ∈ 𝑉ℎ, we have

𝒯5(𝑡) = −2𝑎E

⎡⎣∫︁ 𝑡

0

𝑁∑︁
𝑗=1

[︀
𝐻+

𝑗

(︀
𝜂𝑣(·, 𝑠), 𝜉𝑢(·, 𝑠)

)︀
+𝐻−

𝑗

(︀
𝜂𝑢(·, 𝑠), 𝜉𝑣(·, 𝑠)

)︀]︀
d𝑠

⎤⎦ = 0.

– The estimate of 𝒯6(𝑡).
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We have from (H3) and Young’s inequality that

𝒯6(𝑡) = 2E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

[︀
𝜓 (𝑥, 𝑠, 𝑢(𝑥, 𝑠), 𝑣(𝑥, 𝑠))− 𝜓 (𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠))

]︀
𝜉𝑢(𝑥, 𝑠) d𝑥d𝑠

]︂
≤ 2𝐵1E

[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

(︀
|𝜉𝑢(𝑥, 𝑠)|+ |𝜂𝑢(𝑥, 𝑠)|+ |𝜉𝑣(𝑥, 𝑠)|+ |𝜂𝑣(𝑥, 𝑠)|

)︀
|𝜉𝑢(𝑥, 𝑠)|d𝑥d𝑠

]︂
≤ 𝐵1E

[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

[︀
|𝜂𝑢(𝑥, 𝑠)|2 + |𝜂𝑣(𝑥, 𝑠)|2

]︀
d𝑥 d𝑠

]︂
+𝐵1E

[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

[︂(︂
4 +

8𝐵1

2𝑎− 𝐶2
2

)︂
|𝜉𝑢(𝑥, 𝑠)|2 +

2𝑎− 𝐶2
2

8𝐵1
|𝜉𝑣(𝑥, 𝑠)|2

]︂
d𝑥d𝑠

]︂
≤ 𝐶E

∫︁ 𝑡

0

[︁
‖𝜂𝑢(·, 𝑠)‖2 + ‖𝜂𝑣(·, 𝑠)‖2 + ‖𝜉𝑢(·, 𝑠)‖2

]︁
d𝑠+

2𝑎− 𝐶2
2

8
E
[︂∫︁ 𝑡

0

‖𝜉𝑣(·, 𝑠)‖2 d𝑠
]︂
.

Using the property of projection (2.3), we have

𝒯6(𝑡) ≤ 𝐶ℎ2𝑘+2E
[︂∫︁ 𝑡

0

‖𝑢(·, 𝑠)‖2𝐻𝑘+1 d𝑠
]︂

+ 𝐶ℎ2𝑘+2E
[︂∫︁ 𝑡

0

‖𝑣(·, 𝑠)‖2𝐻𝑘+1 d𝑠
]︂

+𝐶E
[︂∫︁ 𝑡

0

‖𝜉𝑢(·, 𝑠)‖2 d𝑠
]︂

+
2𝑎− 𝐶2

2

8
E
[︂∫︁ 𝑡

0

‖𝜉𝑣(·, 𝑠)‖2 d𝑠
]︂
.

Therefore,

𝒯6(𝑡) ≤ 𝐶 ℎ2𝑘+2 + 𝐶

∫︁ 𝑡

0

E
[︁
‖𝜉𝑢(·, 𝑠)‖2

]︁
d𝑠+

2𝑎− 𝐶2
2

8
E
[︂∫︁ 𝑡

0

‖𝜉𝑣(·, 𝑠)‖2 d𝑠
]︂
.

– The estimate of 𝒯7(𝑡).

According to Lemma 2.1, by virtue of (3.17), (3.18), 𝑔 (·, 𝑢(·), 𝑢𝑥(·)) ∈ 𝐿2
(︀
Ω× [0, 𝑇 ];𝐿2

)︀
and 𝑢(·) ∈

𝒮2
(︀
Ω× [0, 𝑇 ];𝐿2

)︀
, we see that the process∫︁ 𝑡

0

∫︁ 2𝜋

0

[𝑔 (𝑥, 𝑠, 𝑢(𝑥, 𝑠), 𝑣(𝑥, 𝑠)))− 𝑔 (𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠))] 𝜉𝑢(𝑥, 𝑠) d𝑥d𝑊𝑠, 0 ≤ 𝑡 ≤ 𝑇

is a martingale. Thus,

𝒯7(𝑡) = 2E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

[︀
𝑔 (𝑥, 𝑠, 𝑢(𝑥, 𝑠), 𝑣(𝑥, 𝑠))− 𝑔 (𝑥, 𝑠, 𝑢ℎ(𝑥, 𝑠), 𝑣ℎ(𝑥, 𝑠))

]︀
𝜉𝑢(𝑥, 𝑠) d𝑥 d𝑊𝑠

]︂
= 0.

Concluding the above, we have

E
[︁
‖𝜉𝑢(·, 𝑡)‖2

]︁
+

2𝑎− 𝐶2
2

8
E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

|𝜉𝑣(𝑥, 𝑠)|2 d𝑥d𝑠
]︂

≤ ‖𝜉𝑢(·, 0)‖2 + 𝐶ℎ2𝑘+2 + 𝐶

∫︁ 𝑡

0

E
[︁
‖𝜉𝑢(·, 𝑠)‖2

]︁
d𝑠.

Since ‖𝜉𝑢(·, 0)‖ = ‖𝒬𝑢0 − 𝒫𝑢0‖ ≤ 𝐶ℎ𝑘+1 ‖𝑢0‖𝐻𝑘+1 , we have from Gronwall’s inequality that(︀
E
[︀
‖𝜉𝑢(·, 𝑡)‖2

]︀)︀ 1
2 ≤ 𝐶ℎ𝑘+1𝑒𝐶𝑡,
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which yields (︂
E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

|𝜉𝑣(𝑥, 𝑠)|2 d𝑥d𝑠
]︂)︂ 1

2

≤ 𝐶ℎ𝑘+1𝑒𝐶𝑡.

Since 𝑢 ∈ 𝐿∞
(︀
0, 𝑇 ;𝐿2(Ω;𝐻𝑘+1)

)︀
, we have

(︀
E
[︀
‖𝜂𝑢(·, 𝑡)‖2

]︀)︀ 1
2 ≤ 𝐶

(︁
E
[︁
‖𝑢(·, 𝑡)‖2𝐻𝑘+1

]︁)︁ 1
2
ℎ𝑘+1 ≤ 𝐶ℎ𝑘+1.

It turns out that(︁
E
[︁
‖𝑢(·, 𝑡)− 𝑢ℎ(·, 𝑡)‖2

]︁)︁ 1
2 ≤

(︀
E
[︀
‖𝜉𝑢(·, 𝑡)‖2

]︀)︀ 1
2 +

(︀
E
[︀
‖𝜂𝑢(·, 𝑡)‖2

]︀)︀ 1
2 ≤ 𝐶𝑒𝐶𝑡ℎ𝑘+1.

Since 𝑣 ∈ 𝐿2
(︀
Ω× [0, 𝑇 ];𝐻𝑘+1

)︀
, we have

(︂
E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

|𝜂𝑣(𝑥, 𝑠)|2 d𝑥 d𝑠
]︂)︂ 1

2

≤ 𝐶

(︂
E
[︂∫︁ 𝑡

0

‖𝑣(·, 𝑠)‖2𝐻𝑘+1 d𝑠
]︂)︂ 1

2

ℎ𝑘+1 ≤ 𝐶ℎ𝑘+1.

Thus, we have(︂
E
[︂∫︁ 𝑡

0

‖𝑢𝑥(·, 𝑠)− 𝑣ℎ(·, 𝑠)‖2 d𝑠
]︂)︂ 1

2

≤
(︂

E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

|𝜂𝑣(𝑥, 𝑠)|2 d𝑥d𝑠
]︂)︂ 1

2

+
(︂

E
[︂∫︁ 𝑡

0

∫︁ 2𝜋

0

|𝜉𝑣(𝑥, 𝑠)|2 d𝑥d𝑠
]︂)︂ 1

2

≤ 𝐶ℎ𝑘+1𝑒𝐶𝑡.

�

Remark 5.2. The error estimate is optimal regarding the polynomial degree 𝑘 but may be not optimal regard-
ing the required high-regularity of the exact solution 𝑢 in assumption (H5), whose integrability and differen-
tiability are used to derive our error estimate. Note that the high regularities required in (H5) can be found
in [18, 24] for some special SPDEs (1.1), like the linear SPDEs (1.1) in [18] and the semilinear SPDEs (1.1)
in [24] where 𝑎(·) does not depend on (𝑢, 𝑢𝑥) and 𝑔(·) does not depend on 𝑢𝑥.

6. Time discretization

The LDG method incorporates the spatial discretization and reduces the primal SPDE into a system of SDEs,
which needs to be coupled with a high-order time discretization. We will propose a numerical scheme which
avoids the usage of derivatives in much the same way that Runge–Kutta schemes do in the deterministic setting.
For notational simplicity, we shall mainly state the schemes for the autonomous case. Consider the following
matrix-valued SDE: ⎧⎨⎩𝑑𝑋𝑖,𝑗

𝑡 = 𝑎𝑖,𝑗(𝑋𝑡) d𝑡+ 𝑏𝑖,𝑗(𝑋𝑡) d𝑊𝑡, 𝑡 > 0;

𝑋𝑖,𝑗
0 = 𝑥𝑖,𝑗

0 ,

where 𝑖 = 0, 1, . . . , 𝑘 and 𝑗 = 0, 1, . . . , 𝑁 + 1. We aim to use 𝑌 𝑖,𝑗
𝑛 to approximate 𝑋𝑖,𝑗

𝑡𝑛
. Define 𝑌 𝑖,𝑗

0 := 𝑥𝑖,𝑗
0 .

Suppose we already have {𝑌 𝑖,𝑗
𝑛 : 𝑖 = 0, 1, . . . , 𝑘 and 𝑗 = 0, 1, . . . , 𝑁 + 1}.

We use an explicit derivative-free strong scheme of order 1.5 from Kloeden and Platen [27]. For convenience
of the reader, we give a detailed description here.
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Define

∆𝑛 := 𝑡𝑛+1 − 𝑡𝑛, ∆𝑊𝑛 := 𝑊𝑡𝑛+1 −𝑊𝑡𝑛 , ∆𝑍𝑛 :=
∫︁ 𝑡𝑛+1

𝑡𝑛

(𝑊𝑠 −𝑊𝑡𝑛) d𝑠.

We set

𝛾𝑚,𝑙
± := 𝑌 𝑚,𝑙

𝑛 + 𝑎𝑚,𝑙(𝑌𝑛)∆𝑛 ± 𝑏𝑚,𝑙(𝑌𝑛)
√︀

∆𝑛 ,

and

𝜑𝑚,𝑙
± := 𝛾𝑚,𝑙

+ ± 𝑏𝑚,𝑙(𝛾+)
√︀

∆𝑛.

Then, an explicit order 1.5 strong scheme has the form

𝑌 𝑖,𝑗
𝑛+1 = 𝑌 𝑖,𝑗

𝑛 + 𝑎𝑖,𝑗(𝑌𝑛)∆𝑛 + 𝑏𝑖,𝑗(𝑌𝑛)∆𝑊𝑛

(order 0.5)

+
1

4
√

∆𝑛

{︀
𝑏𝑖,𝑗(𝛾+)− 𝑏𝑖,𝑗(𝛾−)

}︀{︁
(∆𝑊𝑛)2 −∆𝑛

}︁
(order 1.0)

+
1
4
{︀
𝑎𝑖,𝑗(𝛾+)− 2𝑎𝑖,𝑗(𝑌𝑛) + 𝑎𝑖,𝑗(𝛾−)

}︀
∆𝑛

+
1

2
√

∆𝑛

{︀
𝑎𝑖,𝑗(𝛾+)− 𝑎𝑖,𝑗(𝛾−)

}︀
∆𝑍𝑛

+
1

2∆𝑛

{︀
𝑏𝑖,𝑗(𝛾+)− 2𝑏𝑖,𝑗(𝑌𝑛) + 𝑏𝑖,𝑗(𝛾−)

}︀
{∆𝑊𝑛∆𝑛 −∆𝑍𝑛}

+
1

4∆𝑛

{︀
𝑏𝑖,𝑗(𝜑+)− 𝑏𝑖,𝑗(𝜑−)− 𝑏𝑖,𝑗(𝛾+) + 𝑏𝑖,𝑗(𝛾−)

}︀{︂1
3

(∆𝑊𝑛)2 −∆𝑛

}︂
∆𝑊𝑛.

(order 1.5) (6.1)

Here, the additional random variable ∆𝑍𝑛 is normally distributed with the following mean, variance and corre-
lation:

E [∆𝑍𝑛] = 0, E
[︁
(∆𝑍𝑛)2

]︁
=

1
3

∆3
𝑛, E [∆𝑊𝑛∆𝑍𝑛] =

1
2

∆2
𝑛,

respectively. We note that there is no difficulty in generating the pair of correlated normally distributed random
variables ∆𝑊𝑛 and ∆𝑍𝑛 using the transformation

∆𝑊𝑛 = 𝜁𝑛,1∆
1
2
𝑛 , ∆𝑍𝑛 =

1
2

(︂
𝜁𝑛,1 +

1√
3
𝜁𝑛,2

)︂
∆

3
2
𝑛 ,

where 𝜁𝑛,1 and 𝜁𝑛,2 are independent and 𝑁(0; 1) distributed random variables.

7. Numerical experiments

In this section we consider the application of the numerical method, which we have defined in section 3, on
some model problems. Here, 𝑀 is the number of realizations of the stochastic approximate solutions. We use the
average of 𝑀 realizations to approximate the mathematical expectation. The degree of the piecewise polynomial
space 𝑉ℎ is 𝑘. The positive real number 𝑇 is the terminal time. Since the considered problems are second order
SPDEs, in all experiments, we need to adjust the time step to ∆𝑡 ∼ (∆𝑥)2 to guarantee the stability for the
explicit time discretization. Moreover, by setting ∆𝑡 ∼ (∆𝑥)2, the scheme in time is effectively third-order.
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Table 1. Verification of optimal convergence for nondegenerate linear SPDEs (7.1) with mul-
tiplicative noise: 𝑘 = 1, 𝑀 = 1000.

𝑏 = 0.1 𝑏 = 0.5 𝑏 = 1.0
𝑁 𝐿2 Error Order 𝐿2 Error Order 𝐿2 Error Order

𝑇 = 0.1

10 3.87E-02 – 3.91E-02 – 4.06E-02 –
20 9.65E-03 2.01 9.76E-03 2.00 1.01E-02 2.01
40 2.41E-03 2.00 2.44E-03 2.00 2.53E-03 2.00
80 6.03E-04 2.00 6.10E-04 2.00 6.35E-04 2.00
160 1.51E-04 2.00 1.53E-04 1.99 1.60E-04 1.99

𝑇 = 0.5

10 2.60E-02 – 2.76E-02 – 3.36E-02 –
20 6.48E-03 2.00 6.86E-03 2.01 8.17E-03 2.04
40 1.62E-03 2.00 1.72E-03 2.00 2.01E-03 2.02
80 4.05E-04 2.00 4.31E-04 2.00 5.22E-04 1.95
160 1.01E-04 2.00 1.09E-04 1.99 1.30E-04 2.01

𝑇 = 1.0

10 1.58E-02 – 1.79E-02 – 2.67E-02 –
20 3.94E-03 2.00 4.41E-03 2.02 6.17E-03 2.11
40 9.85E-04 2.00 1.10E-03 2.00 1.46E-03 2.08
80 2.46E-04 2.00 2.79E-04 1.98 4.04E-04 1.85
160 6.18E-05 1.99 7.02E-05 1.99 9.71E-05 2.06

7.1. Nondegenerate linear SPDEs

We consider the following linear equation{︃
d𝑢 = 𝑢𝑥𝑥 d𝑡+ 𝑏𝑢d𝑊𝑡 in Ω× [0, 2𝜋]× (0, 𝑇 ];

𝑢(𝑥, 0) = sin(𝑥), 𝑥 ∈ [0, 2𝜋].
(7.1)

The exact solution of (7.1) is
𝑢(𝜔, 𝑥, 𝑡) = sin(𝑥)𝑒𝑏𝑊𝑡(𝜔)− 1

2 𝑏2𝑡−𝑡.

In both Tables 1 and 2, we show the 𝐿2-errors for the linear equation (7.1) with 𝑀 = 1000 realizations.
We see that the scheme has (𝑘 + 1)-th order of accuracy. The 𝐿2-error increases as the stochastic coefficient 𝑏
increases. All the numerical results coincide with the conclusion of Theorem 5.1.

7.2. Linear SPDEs with derivative in the diffusion term

In the following we test the accuracy of the LDG method on the linear equation with first order spatial
derivative involved in the diffusion term as follows,⎧⎨⎩d𝑢 =

1
2
𝑢𝑥𝑥 d𝑡+ 𝑏 𝑢𝑥 d𝑊𝑡, in Ω× [0, 2𝜋]× (0, 𝑇 ];

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [0, 2𝜋].
(7.2)

If 𝑏 = 1, then (7.2) is a degenerate linear SPDE satisfying 2𝛼 = 𝐶2
4 . The exact solution is

𝑢(𝜔, 𝑥, 𝑡) = 𝑢0

(︀
𝑥+𝑊𝑡(𝜔)

)︀
.

In Table 3, we show the 𝐿2-errors for the linear equation (7.2) with 𝑏 = 1, 𝑀 = 100 realizations and smooth
initial condition 𝑢0(𝑥) = sin(𝑥). For different terminal time 𝑇 , the scheme has the expected (𝑘 + 1)-th order of
accuracy.
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Table 2. Verification of optimal convergence for nondegenerate linear SPDEs (7.1) with mul-
tiplicative noise: 𝑘 = 2, 𝑀 = 1000.

𝑏 = 0.1 𝑏 = 0.5 𝑏 = 1.0
𝑁 𝐿2 Error Order 𝐿2 Error Order 𝐿2 Error Order

𝑇 = 0.1

10 1.94E-03 – 1.96E-03 – 2.03E-03 –
20 2.43E-04 3.00 2.47E-04 2.98 2.58E-04 2.97
40 3.03E-05 3.00 3.07E-05 3.01 3.20E-05 3.01
80 3.80E-06 3.00 3.85E-06 3.00 4.02E-06 2.99
160 4.75E-07 3.00 4.83E-07 2.99 5.05E-07 2.99

𝑇 = 0.5

10 1.30E-03 – 1.38E-03 – 1.67E-03 –
20 1.64E-04 2.99 1.75E-04 2.97 2.12E-04 2.97
40 2.04E-05 3.01 2.17E-05 3.01 2.64E-05 3.01
80 2.55E-06 3.00 2.73E-06 2.99 3.41E-06 2.95
160 3.19E-07 3.00 3.43E-07 2.99 4.18E-07 3.03

𝑇 = 1.0

10 7.91E-04 – 8.90E-04 – 1.32E-03 –
20 9.96E-05 2.99 1.14E-04 2.97 1.71E-04 2.95
40 1.24E-05 3.01 1.41E-05 3.01 2.09E-05 3.03
80 1.55E-06 3.00 1.79E-06 2.98 2.83E-06 2.88
160 1.94E-07 3.00 2.23E-07 3.00 3.26E-07 3.12

Table 3. Verification of optimal convergence for degenerate linear SPDEs (7.2) with smooth
initial value: 𝑏 = 1, 𝑀 = 100, 𝑢0(𝑥) = sin(𝑥).

𝑘 = 1 𝑘 = 2
𝑁 𝐿2 Error Order 𝐿2 Error Order

𝑇 = 0.1

10 4.27E-02 – 2.29E-03 –
20 1.07E-02 2.00 2.73E-04 3.07
40 2.66E-03 2.00 3.36E-05 3.02
80 6.65E-04 2.00 4.20E-06 3.00
160 1.66E-04 2.00 5.24E-07 3.00

𝑇 = 0.5

10 4.32E-02 – 2.27E-03 –
20 1.07E-02 2.02 2.74E-04 3.05
40 2.67E-03 2.00 3.39E-05 3.01
80 6.66E-04 2.00 4.19E-06 3.02
160 1.66E-04 2.00 5.24E-07 3.00

𝑇 = 1.0

10 4.43E-02 – 2.23E-03 –
20 1.07E-02 2.05 2.75E-04 3.02
40 2.67E-03 2.01 3.43E-05 3.00
80 6.66E-04 2.00 4.20E-06 3.03
160 1.66E-04 2.00 5.24E-07 3.00

We also consider the case that the initial condition is discontinuous

𝑢0(𝑥) =

{︃
1, if 𝜋

2 ≤ 𝑥 ≤ 3𝜋
2 ;

0, if 0 ≤ 𝑥 < 𝜋
2 or 3𝜋

2 < 𝑥 ≤ 2𝜋.
(7.3)

For this discontinuous case, we compute the solution up to 𝑇 = 1.0 with only one realization 𝑀 = 1. The
results are shown in Figure 1. We observe that the scheme converges to the true solution when 𝑁 increases.
There are oscillations arising near the discontinuities of the solution.
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Figure 1. Performance of LDG scheme for degenerate linear SPDEs (7.2) with discontinuous
initial value (7.3) and one fixed path: 𝑏 = 1, 𝑀 = 1, 𝑇 = 1.

Remark 7.1. If we set 𝑏 > 1 in our codes, i.e., the condition 2𝛼 − 𝐶2
4 ≥ 0 in Theorems 4.1 and 4.2 is not

satisfied, then we find that the 𝐿2-norm of the numerical solutions would explode, which confirms the necessity
of the stochastic parabolicity condition.

Remark 7.2. The 𝐿2-stability is very helpful in this discontinuous case, but is not enough to control the
spurious numerical oscillations near the discontinuous region. In practice, it is worth trying to use limiters to
control oscillations for the problems containing strong discontinuities, which will be investigated in the future.

7.3. Stochastic viscous Burgers equation

Although we cannot give error estimates for fully nonlinear equations, it is worth trying to apply the LDG
method to solve some nonlinear equations. The next example is the stochastic viscous Burgers equation,⎧⎨⎩ d𝑢 =

[︂
𝜎2

2
𝑢𝑥𝑥 −

1
2
(︀
𝑢2
)︀
𝑥

]︂
d𝑡+ (𝜎𝑢𝑥 + 𝑏) d𝑊𝑡, in Ω× [0, 2𝜋]× (0, 𝑇 ];

𝑢(𝑥, 0) = sin(𝑥), 𝑥 ∈ [0, 2𝜋].
(7.4)
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Table 4. Verification of optimal convergence for stochastic viscous Burgers equation (7.4) with
linear multiplicative noise: 𝑏 = 𝜎 = 1, 𝑀 = 100.

𝑘 = 1 𝑘 = 2
𝑁 𝐿2 Error Order 𝐿2 Error Order

𝑇 = 0.1

10 4.21E-02 – 2.40E-03 –
20 1.07E-02 1.97 2.90E-04 3.05
40 2.65E-03 2.02 3.62E-05 3.00
80 6.69E-04 1.99 4.54E-06 3.00
160 1.69E-04 1.99 5.65E-07 3.01

𝑇 = 0.4

10 5.87E-02 – 5.83E-03 –
20 1.46E-02 2.01 8.48E-04 2.78
40 3.64E-03 2.00 1.01E-04 3.07
80 9.10E-04 2.00 1.22E-05 3.06
160 2.29E-04 1.99 1.51E-06 3.02

𝑇 = 0.8

10 2.21E-01 – 7.98E-02 –
20 9.94E-02 1.15 2.57E-02 1.63
40 3.74E-02 1.41 5.97E-03 2.11
80 1.14E-02 1.71 1.05E-03 2.50
160 2.83E-03 2.01 9.00E-05 3.55

𝑇 = 1.2

10 5.58E-01 – 4.02E-01 –
20 4.31E-01 0.37 3.16E-01 0.35
40 3.37E-01 0.36 2.38E-01 0.41
80 2.62E-01 0.36 1.91E-01 0.32
160 2.20E-01 0.25 1.56E-01 0.29

The exact solution of (7.4) is

𝑢(𝜔, 𝑥, 𝑡) = 𝑣

(︂
𝑥− 𝑏

∫︁ 𝑡

0

𝑊𝑠 d𝑠+ 𝜎𝑊𝑡, 𝑡

)︂
+ 𝑏𝑊𝑡,

where 𝑣 is the solution of the following deterministic inviscid Burgers equation{︃
𝑑𝑣 + 1

2

(︀
𝑣2
)︀
𝑥

d𝑡 = 0 in [0, 2𝜋]× (0, 𝑇 ),

𝑣(𝑥, 0) = sin(𝑥), 𝑥 ∈ [0, 2𝜋].
(7.5)

Note that the solution of (7.5) has an infinite slope - the wave “breaks” and a shock forms at

𝑇𝑏 =
−1

min 𝑣′0(𝑥)
= 1.

See [29]. So the exact solution of the stochastic viscous Burgers equation (7.4) also has a shock at 𝑇𝑏 = 1.
We use the simple Lax–Friedrichs flux for the nonlinear convection term 𝑓(𝑢) = 𝑢2

2 ,

̂︀𝑓 (︀𝑢−, 𝑢+
)︀

=
1
4

{︁(︀
𝑢−
)︀2 +

(︀
𝑢+
)︀2}︁− 1

2
𝛼
(︀
𝑢+ − 𝑢−

)︀
,

where
𝛼 = max

𝑗

{︁⃒⃒⃒
𝑢−

𝑗+ 1
2

⃒⃒⃒
,
⃒⃒⃒
𝑢+

𝑗+ 1
2

⃒⃒⃒}︁
.

In Table 4, we show the 𝐿2-errors for equation (7.4) with 𝑏 = 𝜎 = 1 and 𝑀 = 100 realizations. We see that
the order of accuracy converges to 𝑘+ 1 when 𝑇 < 𝑇𝑏. The scheme loses the order of accuracy as 𝑇 = 1.2 since
the problem involves a shock when 𝑇 > 𝑇𝑏.
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Figure 2. Performance of LDG scheme for stochastic viscous Burgers equation (7.4) with
linear multiplicative noise and one fixed path: 𝑏 = 1, 𝜎 = 1, 𝑀 = 1, 𝑇 = 1.2.

To see the behavior of numerical solution with 𝑇 > 𝑇𝑏, we plot the approximate solution and the true solution
at 𝑇 = 1.2 with 𝑏 = 𝜎 = 1 and only one realization 𝑀 = 1 to get Figure 2. We observe that the LDG scheme
converges nicely to the exact solution for fixed stochastic path 𝜔. Again, some oscillations appear near the
discontinuous region.

7.4. Numerical test for studying the necessity of the stochastic parabolicity condition
2𝛼 ≥ 𝐶2

4 for the LDG scheme

Next we examine our numerical scheme on the following nonlinear SPDE to investigate the necessity of the
stochastic parabolicity condition⎧⎨⎩d𝑢 =

[︂(︀
𝑢2𝑢𝑥

)︀
𝑥
− 𝑢𝑥 + 3𝑢3 −

(︂
2 +

𝑏2

2

)︂
𝑢

]︂
d𝑡+ 𝑏𝑢𝑥 d𝑊𝑡, in Ω× [0, 2𝜋]× (0, 𝑇 ];

𝑢(𝑥, 0) = sin(𝑥), 𝑥 ∈ [0, 2𝜋].
(7.6)

One of the exact solutions of (7.6) is

𝑢(𝜔, 𝑥, 𝑡) = sin (𝑥+ 𝑏𝑊𝑡 − 𝑡) . (7.7)
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Table 5. Verification of stability and convergence for nonlinear SPDEs (7.6) with multiplicative
noise: 𝑘 = 1, 𝑀 = 100.

𝑏 = 0.05 𝑏 = 0.1 𝑏 = 0.5
𝑁 𝐿2 Error Order 𝐿2 Error Order 𝐿2 Error Order

𝑇 = 0.01

10 3.17E-02 – 3.17E-02 – 3.25E-02 –
20 1.04E-02 1.61 1.04E-02 1.61 1.06E-02 1.62
40 2.73E-03 1.92 2.74E-03 1.92 3.95E-03 1.42
80 7.02E-04 1.96 7.11E-04 1.94 1.43E-03 1.47
160 1.77E-04 1.99 1.78E-04 2.00 1.69E-04 3.08

𝑇 = 0.1

10 4.83E-02 – 4.83E-02 – 4.94E-02 –
20 1.21E-02 2.00 1.22E-02 1.99 1.41E-02 1.81
40 3.03E-03 2.00 3.11E-03 1.97 1.03E-02 0.45
80 7.54E-04 2.01 8.01E-04 1.96 1.01E-02 0.03
160 1.82E-04 2.05 1.84E-04 2.12 1.79E-01 –4.15

𝑇 = 0.5

10 5.52E-02 – 5.57E-02 – 6.44E-02 –
20 1.27E-02 2.11 1.29E-02 2.11 1.79E-02 1.85
40 3.15E-03 2.02 3.22E-03 2.00 1.62E-02 0.15
80 7.84E-04 2.00 8.33E-04 1.95 2.36E-01 –3.87
160 1.94E-04 2.01 2.51E-04 1.73 5.92E-01 –1.33

Table 6. Verification of stability and convergence for nonlinear SPDEs (7.6) with multiplicative
noise: 𝑘 = 2, 𝑀 = 100.

𝑏 = 0.05 𝑏 = 0.1 𝑏 = 0.5
𝑁 𝐿2 Error Order 𝐿2 Error Order 𝐿2 Error Order

𝑇 = 0.01

10 1.78E-03 – 1.78E-03 – 1.88E-03 –
20 2.67E-04 2.74 2.68E-04 2.74 3.08E-04 2.61
40 3.65E-05 2.87 3.67E-05 2.87 1.02E-04 1.60
80 4.57E-06 3.00 4.67E-06 2.97 2.71E-03 -4.73
160 5.57E-07 3.04 5.91E-07 2.98 2.51E-01 -6.53

𝑇 = 0.1

10 4.70E-03 – 4.71E-03 – 5.33E-03 –
20 4.46E-04 3.39 4.52E-04 3.38 1.13E-03 2.23
40 4.44E-05 3.33 4.50E-05 3.33 2.38E-02 –4.39
80 4.84E-06 3.20 5.03E-06 3.16 4.62E-01 –4.28
160 5.61E-07 3.11 2.48E-06 1.02 6.09E-01 —0.40

𝑇 = 0.5

10 4.18E-03 – 4.30E-03 – 8.15E-03 –
20 4.35E-04 3.26 4.60E-04 3.23 2.15E-02 –1.40
40 4.62E-05 3.24 4.73E-05 3.28 5.43E-01 –4.66
80 4.89E-06 3.24 5.70E-06 3.05 NaN NaN
160 5.72E-07 3.10 3.53E-03 -9.27 6.97E-01 NaN

Notice that in this case 𝛼 is equal to 0 and |𝑏| is greater than 0, so the stochastic parabolic condition
2𝛼 ≥ 𝐶2

4 in Theorems 4.1 and 4.2 is not satisfied, and instability appears for our scheme in this numerical test.
Tables 5 and 6 display the 𝐿2-errors for the nonlinear equation (7.6) with 𝑀 = 100 realizations. We see that the
LDG scheme works well when the terminal time 𝑇 and the stochastic coefficient 𝑏 are small, in which the order
of accuracy is 𝑘 + 1. When 𝑇 and 𝑏 are large enough, similar to the situation we described in Remark 7.1, we
lose the order of accuracy and the scheme seems unstable, which again suggests the necessity of the stochastic
parabolicity condition 2𝛼 ≥ 𝐶2

4 .
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Table 7. Verification of optimal convergence for nondegenerate nonlinear SPDEs (7.8) with
multiplicative noise: 𝑏 = 1, 𝑀 = 100.

𝑘 = 1 𝑘 = 2
𝑁 𝐿2 Error Order 𝐿2 Error Order

𝑇 = 0.1

10 4.37E-02 – 2.18E-03 –
20 1.07E-02 2.03 2.69E-04 3.02
40 2.67E-03 2.01 3.36E-05 3.00
80 6.66E-04 2.00 4.19E-06 3.00
160 1.66E-04 2.00 5.24E-07 3.00

𝑇 = 0.5

10 4.75E-02 – 2.19E-03 –
20 1.09E-02 2.12 2.70E-04 3.02
40 2.68E-03 2.03 3.36E-05 3.01
80 6.67E-04 2.01 4.19E-06 3.00
160 1.66E-04 2.00 5.24E-07 3.00

𝑇 = 1.0

10 1.74E-01 – 2.42E-03 –
20 1.79E-02 3.28 2.87E-04 3.08
40 3.30E-03 2.44 3.62E-05 2.99
80 7.17E-04 2.21 4.45E-06 3.02
160 1.70E-04 2.08 5.56E-07 3.00

7.5. Nondegenerate nonlinear SPDEs

Note that (7.7) is also the exact solution of the following nondegenerate nonlinear equation,⎧⎨⎩d𝑢 =
[︂(︀
𝑢2𝑢𝑥

)︀
𝑥

+
(︂

2 +
𝑏2

2

)︂
𝑢𝑥𝑥 − 𝑢𝑥 + 3𝑢3

]︂
d𝑡+ 𝑏𝑢𝑥d𝑊𝑡 in Ω× [0, 2𝜋]× (0, 𝑇 ];

𝑢(𝑥, 0) = sin(𝑥), 𝑥 ∈ [0, 2𝜋].
(7.8)

We see that in this case the constant 𝛼 equals to 2 + 𝑏2

2 , which implies that the condition 𝛼− 𝑏2

2 = 2 > 0 is
satisfied.

In Table 7, we show the 𝐿2-errors for the equation (7.8) with 𝑏 = 1 and 𝑀 = 100 realizations, which indicates
that the LDG method gives the expected (𝑘+1)-th order of accuracy for the nondegenerate nonlinear problems.

8. Concluding remarks

In this article, we present a semi-discrete LDG scheme for fully nonlinear parabolic SPDEs. The 𝐿2-stability
results of the scheme are obtained, and the optimal error estimates of order 𝒪(ℎ𝑘+1) for semilinear stochastic
equations are proved. We combine an explicit derivative-free order 1.5 time discretization scheme to perform
several numerical experiments on some model problems to confirm the analytical results.
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