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Abstract
In this paper, an ultra-weak discontinuous Galerkin (DG) method is developed to solve
the generalized stochastic Korteweg–de Vries (KdV) equations driven by a multiplicative
temporal noise. Thismethod is an extension of theDGmethod for purely hyperbolic equations
and shares the advantage andflexibility of theDGmethod. Stability is analyzed for the general
nonlinear equations. The ultra-weak DGmethod is shown to admit the optimal error of order
k + 1 in the sense of the spatial L2(0, 2π)-norm for semi-linear stochastic equations, when
polynomials of degree k ≥ 2 are used in the spatial discretization. A second order implicit–
explicit derivative-free time discretization scheme is also proposed for the matrix-valued
stochastic ordinary differential equations derived from the spatial discretization. Numerical
examples using Monte Carlo simulation are provided to illustrate the theoretical results.
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1 Introduction

The Korteweg–de Vries (KdV) equations were introduced in 1895 by Korteweg and de Vries
[20] to model long, unidirectional, dispersive waves of small amplitude. It was generalized
to study the nonlinear anharmonic lattices [34]. The equations turn out to be not only good
models forwaterwaves, but also very useful approximationmodels in nonlinear studieswhich
incorporate and balance a weak nonlinearity and weak dispersive effects. The stochastic KdV
equations arise in the propagation of weakly nonlinear waves in a noisy plasma [4,18,30]. It
is also of interest in any circumstances when the KdV equations are used, since the stochastic
forcing may represent terms that have been neglected in the derivation of this ideal model. In
this paper we present an ultra-weak discontinuous Galerkin (DG) method for the following
stochastic generalized KdV equation with a periodic boundary condition and a multiplicative
temporal noise:

{
du = − [uxxx + f (u)x ] dt + g(·, x, t, u) dWt , (x, t) ∈ [0, 2π] × (0, T ];
u(x, 0) = u0(x), x ∈ [0, 2π],

(1.1)

where the terminal time T > 0 is a fixed real number, and {Wt , 0 ≤ t ≤ T } is a standard
one-dimensional Brownian motion on a given probability space (�,F,P). We denote by
{Ft , 0 ≤ t ≤ T } the augmented natural filtration of W . We make the following hypotheses:

(H1) The initial condition u0 ∈ L2(0, 2π).
(H2) The functions f and g are locally Lipschitz continuous, i.e., for any M ∈ N+, there

exists a positive constant L(M) such that, for all (ω, x, t) ∈ � × [0, 2π] × [0, T ] and
all (u, u′) ∈ R

2 with |u| ∨ |u′| ≤ M ,
∣∣ f (u) − f (u′)

∣∣ ∨ ∣∣g(ω, x, t, u) − g(ω, x, t, u′)
∣∣ ≤ L(M)

∣∣u − u′∣∣ .
(H3) The functions f and g are at most linearly growing, i.e. there exists a constant C > 0

such that for any (ω, x, t, u) ∈ � × [0, 2π ] × [0, T ] × R,

| f (u)| ∨ |g(ω, x, t, u)| ≤ C(1 + |u|).
The existence and uniqueness of solutions for the stochastic KdV equations with a mul-

tiplicative stochastic forcing term involving a temporal white noise was established by de
Bouard and Debussche [15] (cf. also [13,16–18] and the references therein). In most cases,
it is not possible to have explicit solutions to these problems. Thus numerical solutions of
these stochastic partial differential equations (SPDEs) naturally receive a lot of attention.

Concerning numerical schemes for stochastic KdV equations, Debussche and Printems
[14] numerically investigated the influence of an additive noise on the evolution of solutions
based on finite elements and least-squares. By a modified Zabusky–Kruskal finite difference
scheme, Rose [29] discussed the large time behavior of the stochastic KdV equations and
verified the diffusion of solitons. Lin et al. [23] gave numerical solutions of the stochastic
KdV equations for the three cases of additive time-dependent noise, multiplicative space-
dependent noise, and a combination of both, but lacked of any result on stability and error.
They employed polynomial chaos for discretization in random space, and local discontinuous
Galerkin (LDG) and finite difference for discretization in the physical space. Unlike the
plethora of the theoretical and perturbation-based works, little attention seemed to be paid to
the stability and error of the high-order approximation schemes for stochastic KdV equations,
which are the main objective of our current paper.
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The first DG method was presented by Reed and Hill [28] for a deterministic time-
independent linear hyperbolic equation in the framework of neutron transport. A major
development of the DG method is the Runge–Kutta DG (RKDG) framework introduced for
nonlinear hyperbolic conservation laws of first order spatial derivatives in a series of papers
by Cockburn et al. [7–11]. Subsequently, the method was extended to partial differential
equations of order higher than one (e.g. [2,5,12,33]).

In this paper, we extend the ultra-weak DG method to stochastic generalized KdV equa-
tions (1.1). The ultra-weak DGmethod refers to the DGmethod [31] in which the integration
by parts formula is used repeatedly to transfer all the spatial derivatives from the solution
to the test function in the weak formulations. It can be dated back at least to [3]. In [5],
Cheng and Shu developed an ultra-weak DG method for general time-dependent problems
with higher order spatial derivatives, which can be used to numerically solve the determin-
istic generalized KdV equations. They obtained the L2-norm stability results by carefully
choosing the numerical fluxes resulting from integration by parts. With the help of the local
Gauss–Radau projection, they proved error estimates for nonlinear deterministic equation.
Our numerical scheme is the stochastic counterpart of the above work and shares the fol-
lowing advantages and flexibilities of the classical DG method: (1) it is easy to design high
order approximations, thus allowing efficient p-adaptivity; (2) it is flexible on complicated
geometries, thus allowing efficient h-adaptivity; (3) it is local in data communications, thus
allowing efficient parallel implementations.

There are also some types of DGmethods for SPDEs (see [22] and the references therein).
Recently, Li et al. proposed a DG method [21] for nonlinear stochastic hyperbolic conser-
vation laws and an LDG method [22] for nonlinear parabolic SPDEs. By estimating the
quadratic variation process of the approximate solution, they investigated the stability for
fully nonlinear equations and the error estimates for semi-linear equations. Motivated by
these earlier results, in this paper we study the stability for nonlinear KdV equations and
error estimates for semi-linear third-order SPDEs.

The ultra-weak DG method is a scheme for spatial discretization, which needs to be cou-
pled with a high-order time discretization. The explicit methods used in [21,22] are efficient
for solving first-order SPDEs and are tolerable for second-order SPDEs. However, since the
KdV equations contain third-order spatial derivative, explicit time discretization will suffer
from a stringent time-step restriction �t ∼ (�x)3 for stability. Thus it is natural to consider
an implicit time-marching to get rid of this time-step restriction. In many applications, the
convection terms f (·) are often nonlinear; hence we would like to treat them explicitly while
using implicit time discretization only for the third-order term in the KdV equations. Such
time discretizations are called implicit–explicit (IMEX) time discretizations [1]. Wang et al.
[32] proposed an IMEX time discretization scheme for LDG method, which is uncondition-
ally stable for the nonlinear problems. Inspired by them, we give an implementable second
order time discretization for the matrix-valued SDE (6.1), which coincides with the one for
ODEs in [32] for the degenerate case that b(·) ≡ 0.

The paper is organized as follows. In Sect. 2, we introduce notations, definitions and
auxiliary results used in the paper. In Sect. 3, we present the ultra-weak DG method for
nonlinear KdV equations (1.1), and study the existence and uniqueness of the solution to the
stochastic differential equations (SDEs) derived from the spatial discretization. In Sect. 4, we
investigate the L2-stability for the fully nonlinear stochastic equations. In Sect. 5, we obtain
the optimal error estimate (O(hk+1)) for semilinear SPDEs with respect to spatial L2(0, 2π)-
norm. In Sect. 6, we establish a second-order IMEX derivative-free time discretization for
matrix-valued SDEs to collaborate with the semi-discrete ultra-weak DG scheme. Finally
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in Sect. 7 the paper ends with a series of numerical experiments on some model problems,
which confirm our analytical results.

2 Notations, Definitions and Auxiliary Results

In this section, we introduce notations, definitions, and some auxiliary results.

2.1 Notations

We denote the mesh by I j =
[
x j− 1

2
, x j+ 1

2

]
, for j = 1, . . . , N . The mesh size is denoted

by h j = x j+ 1
2

− x j− 1
2
, with h = max

1≤ j≤N
h j being the maximum mesh size. We assume that

the mesh is regular, namely the ratio between the maximum and the minimum mesh sizes
stays bounded during mesh refinements. Denote by Pk(I ) the totality of all polynomials on
I of the degree up to k for any interval I . We define the piece-wisely polynomial space Vh

as follows:

Vh :=
{
v : v restricted on each I j lies in Pk(I j ) for j = 1, . . . , N

}
.

Note that functions in Vh might have discontinuities on an element interface.
We denote by ‖ · ‖ and ‖ · ‖Hm,p , the L2(0, 2π) norm and the Sobolev norm with

respect to the spatial variable x , respectively. For simplicity, by ‖ · ‖Hm , it means ‖ · ‖Hm,2 .
We denote by S p(� × [0, T ]; L2(0, 2π)), the space of all adapted continuous processes

φ : �×[0, T ] −→ L2(0, 2π) such that

(
E

[
sup

0≤t≤T
‖φ(t)‖p

]) 1
p

< ∞. An element ofRk×d

is a k × d matrix, and its Euclidean norm is given by |y| := √
trace(yy∗) for y ∈ R

k×d .
The solution of the numerical scheme is denoted by uh , which belongs to the finite element

space Vh . Set u+
j+ 1

2
:= u(x+

j+ 1
2
) and u−

j+ 1
2

:= u(x−
j+ 1

2
), with x±

j+ 1
2

:= x j+ 1
2
±.

By C > 0, we denote a generic constant, which in particular does not depend on the
discretization width h and possibly changes from line to line. Since the Itô integral is not
defined path-wisely, the argument ω of the integrand as a stochastic process will be omitted
in the rest of this paper if there is no danger of confusion.

2.2 The Numerical Flux

For the convenience of notation we would like to introduce the following numerical flux
related to the ultra-weak DG spatial discretization. The given monotone numerical flux
f̂
(
q−, q+) depends on the two values of the function q at the discontinuity point x j+ 1

2
,

namely q±
j+ 1

2
= q

(
x±

j+ 1
2

)
. The numerical flux f̂

(
q−, q+) satisfies the following condi-

tions:

(a) it is locally Lipschitz continuous and linearly growing;
(b) it is consistent with the physical flux f (q), i.e., f̂ (q, q) = f (q);
(c) it is nondecreasing in the first argument, and nonincreasing in the second argument.
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2.3 Projection Properties

Consider the standard L2-projection of a function u with (k + 1)-th continuous derivatives
into space Vh , denoted by P , i.e., for each j ,∫

I j

[Pu(x) − u(x)] v(x) dx = 0, ∀v ∈ Pk(I j ),

and the local Gauss-Radau projection Q into space Vh , which satisfies, for k = 2,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nQu

(
x−

j+ 1
2

)
= u

(
x−

j+ 1
2

)
,

(Qu)x

(
x+

j− 1
2

)
= ux

(
x+

j− 1
2

)
,

(Qu)xx

(
x+

j− 1
2

)
= uxx

(
x+

j− 1
2

)
,

and for k ≥ 3, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
I j

[Qu(x) − u(x)] r(x) dx = 0, ∀r ∈ Pk−3(I j ),

Qu

(
x−

j+ 1
2

)
= u

(
x−

j+ 1
2

)
,

(Qu)x

(
x+

j− 1
2

)
= ux

(
x+

j− 1
2

)
,

(Qu)xx

(
x+

j− 1
2

)
= uxx

(
x+

j− 1
2

)
.

(2.1)

In view of Ciarlet [6], we have

‖Pu − u‖ + ‖Qu − u‖ ≤ C ‖u‖Hk+1 hk+1 (2.2)

for a positive constant C independent of both u and h.

2.4 Properties of the Itô Formula

Finally we list some properties of the stochastic calculus. If X and Y are continuous semi-
martingales, then the Itô formula tells us that

Xt Yt = X0Y0 +
∫ t

0
Xs dYs +

∫ t

0
Ys d Xs + 〈X , Y 〉t ,

where 〈X , Y 〉 is the quadratic covariation process of X and Y . Note that 〈X , Y 〉 = 〈Y , X〉.
For any locally bounded adapted process H , we have〈∫ ·

0
Hs d Xs, Y

〉
t
=
∫ t

0
Hs d 〈X , Y 〉s . (2.3)

Moreover, if X has bounded total variation, we have

〈X , Y 〉 = 0. (2.4)

One can prove the following lemma easily by using the dominated convergence theorem and
the Burkhöder–Davis–Gundy (abbreviated as BDG) inequality.
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Lemma 2.1 If E

[(∫ T
0 H2

s ds
) 1

2
]

< ∞, then
{∫ t

0 Hs dWs, 0 ≤ t ≤ T
}

is a martingale.

For more details on the Itô formula, the reader is referred to [27].

3 The Ultra-Weak DGMethod for the Generalized Stochastic KdV
Equations

3.1 The Semi-Discrete Ultra-Weak DGMethod

In this subsection, we formulate the ultra-weak DG method for the generalized stochastic
KdV equations. We seek an approximation uh to the exact solution u such that for any
(ω, t) ∈ � × [0, T ], uh(ω, ·, t) belongs to the finite dimensional space Vh . In order to
determine the approximate solution uh , we first note that by multiplying (1.1) with arbitrary
smooth functions v and q , and integrating over I j with j = 1, 2, . . . , N , we get, after a
simple formal integration by parts,

∫
I j

v(x)du(ω, x, t) dx

=
{∫

I j

u (ω, x, t) vxxx (x) dx

− uxx

(
ω, x j+ 1

2
, t
)

v

(
x−

j+ 1
2

)
+ uxx

(
ω, x j− 1

2
, t
)

v

(
x+

j− 1
2

)

+ ux

(
ω, x j+ 1

2
, t
)

vx

(
x−

j+ 1
2

)
− ux

(
ω, x j− 1

2
, t
)

vx

(
x+

j− 1
2

)

− u
(
ω, x j+ 1

2
, t
)

vxx

(
x−

j+ 1
2

)
+ u

(
ω, x j− 1

2
, t
)

vxx

(
x+

j− 1
2

)

+
∫

I j

f (u (ω, x, t)) vx (x) dx

− f
(

u
(
ω, x j+ 1

2
, t
))

v

(
x−

j+ 1
2

)
+ f

(
u
(
ω, x j− 1

2
, t
))

v

(
x+

j− 1
2

)}
dt

+
∫

I j

g
(
ω, x, t, u(ω, x, t)

)
v(x) dx dWt ,

∫
I j

u(ω, x, 0) q(x) dx =
∫

I j

u0(x) q(x) dx .

Next, we replace the smooth functions v and q with test functions vh and qh , respectively,
in the finite element space Vh and the exact solution u with the approximation uh . Since the
functions in Vh might have discontinuities on an element interface, we must also replace the
physical fluxes

u
(
ω, x j+ 1

2
, t
)

, ux

(
ω, x j+ 1

2
, t
)

, uxx

(
ω, x j+ 1

2
, t
)

and f
(

u
(
ω, x j+ 1

2
, t
))
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with the numerical fluxes

û j+ 1
2
(ω, t) , ũx, j+ 1

2
(ω, t) , ǔxx, j+ 1

2
(ω, t) and f̂ j+ 1

2
(ω, t)

respectively, which will be suitably chosen later. Thus, the approximate solution given by
the ultra-weak DG method is defined as the solution of the following weak formulation:

∫
I j

vh(x)duh(ω, x, t) dx =
{∫

I j

uh (ω, x, t) (vh)xxx (x) dx

− ǔxx, j+ 1
2
(ω, t) vh

(
x−

j+ 1
2

)
+ ǔxx, j− 1

2
(ω, t) vh

(
x+

j− 1
2

)

+ ũx, j+ 1
2
(ω, t) (vh)x

(
x−

j+ 1
2

)
− ũx, j− 1

2
(ω, t) (vh)x

(
x+

j− 1
2

)

− û j+ 1
2
(ω, t) (vh)xx

(
x−

j+ 1
2

)
+ û j− 1

2
(ω, t) (vh)xx

(
x+

j− 1
2

)

+
∫

I j

f (uh (ω, x, t)) (vh)x (x) dx

− f̂ j+ 1
2
(ω, t) vh

(
x−

j+ 1
2

)
+ f̂ j− 1

2
(ω, t) vh

(
x+

j− 1
2

)}
dt

+
∫

I j

g
(
ω, x, t, uh(ω, x, t)

)
vh(x) dx dWt ,

∫
I j

uh(ω, x, 0) qh(x) dx =
∫

I j

u0(x) qh(x) dx . (3.1)

It only remains to choose suitable numerical fluxes. For j = 0, 1, . . . , N , we choose

f̂ j+ 1
2
(ω, t) := f̂

(
uh

(
ω, x−

j+ 1
2
, t

)
, uh

(
ω, x+

j+ 1
2
, t

))
,

where the numerical flux f̂ (·, ·) is a monotone flux as described in Sect. 2.2. We also choose
the other numerical fluxes as

ũx, j+ 1
2
(ω, t) := (uh)x

(
ω, x+

j+ 1
2
, t

)
, (3.2)

and

û j+ 1
2
(ω, t) := uh

(
ω, x−

j+ 1
2
, t

)
, ǔxx, j+ 1

2
(ω, t) := (uh)xx

(
ω, x+

j+ 1
2
, t

)
. (3.3)

Note that, by periodicity, we have

û 1
2

= ûN+ 1
2
, ũx,N+ 1

2
= ũx, 12

, ǔxx,N+ 1
2

= ǔxx, 12
,

and

f̂ 1
2

= f̂N+ 1
2

= f̂

(
uh

(
ω, x−

N+ 1
2
, t

)
, uh

(
ω, x+

1
2
, t

))
.
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For simplicity of notation, for j = 1, 2, . . . , N and piece-wisely smooth functions u and
v, we define

Hj (u, v) :=
∫

I j

u (x) vxxx (x) dx − u

(
x−

j+ 1
2

)
vxx

(
x−

j+ 1
2

)
+ u

(
x−

j− 1
2

)
vxx

(
x+

j− 1
2

)

+ ux

(
x+

j+ 1
2

)
vx

(
x−

j+ 1
2

)
− ux

(
x+

j− 1
2

)
vx

(
x+

j− 1
2

)

− uxx

(
x+

j+ 1
2

)
v

(
x−

j+ 1
2

)
+ uxx

(
x+

j− 1
2

)
v

(
x+

j− 1
2

)
, (3.4)

and

H f
j (u, v) :=

∫
I j

f (u) vx dx − f̂

(
u

(
x−

j+ 1
2

)
, u

(
x+

j+ 1
2

))
v

(
x−

j+ 1
2

)

+ f̂

(
u

(
x−

j− 1
2

)
, u

(
x+

j− 1
2

))
v

(
x+

j− 1
2

)
(3.5)

with the numerical flux f̂ (·, ·) being defined in Sect. 2.2. Then the approximate scheme (3.1)
now reads∫

I j

vh(x)duh(ω, x, t) dx =
[

Hj
(
uh(ω, ·, t), vh

) + H f
j

(
uh(ω, ·, t), vh

)]
dt

+
∫

I j

g
(
ω, x, t, uh(ω, x, t)

)
vh(x) dx dWt . (3.6)

Remark 3.1 We could also define the numerical flux (3.3) in an alternative way as follows:

û j+ 1
2
(ω, t) := uh

(
ω, x+

j+ 1
2
, t

)
, ǔxx, j+ 1

2
(ω, t) := (uh)xx

(
ω, x−

j+ 1
2
, t

)
.

It is crucial that we take the flux ũx as in (3.2) and û, ǔxx from the opposite directions.

3.2 The Stochastic Ordinary Differential Equation Derived from the Spatial
Discretization

The ultra-weak DG method as a spatial discretization, transfers the primal problem into a
systemof ordinary stochastic differential equations, whichwill be specified in this subsection.
For x ∈ I j with j = 1, 2, . . . , N , the numerical solution should have the form

uh(ω, x, t) =
k∑

l=0

ul, j (ω, t)ϕ j
l (x),

where {ϕ j
l , l = 0, 1, . . . , k} is an arbitrary basis of Pk(I j ).

By periodicity, we define the “ghost” coefficients as follows:

ul,0 = ul,N , ul,N+1 = ul,1.

Our aim is to solve (3.1) to get the coefficients u(ω, t) = [ul, j (ω, t)]l∈{0,...,k}, j∈{0,...,N+1}.
For j = 1, 2, . . . , N , by taking vh := ϕ

j
m for m = 0, 1, . . . , k in equality (3.1), we have
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k∑
n=0

(∫
I j

ϕ
j
m(x)ϕ

j
n (x) dx

)
dun, j (ω, t)

=
{∫

I j

k∑
n=0

un, j (ω, t)ϕ j
n (x)

(
ϕ

j
m

)
xxx

(x) dx

−
k∑

n=0

[
un, j+1(ω, t)

(
ϕ

j+1
n

)
xx

(
x j+ 1

2

)
ϕ

j
m

(
x j+ 1

2

)

−un, j (ω, t)
(
ϕ

j
n

)
xx

(
x j− 1

2

)
ϕ

j
m

(
x j− 1

2

)]

+
k∑

n=0

[
un, j+1(ω, t)

(
ϕ

j+1
n

)
x

(
x j+ 1

2

) (
ϕ

j
m

)
x

(
x j+ 1

2

)

−un, j (ω, t)
(
ϕ

j
n

)
x

(
x j− 1

2

) (
ϕ

j
m

)
x

(
x j− 1

2

)]

−
k∑

n=0

[
un, j (ω, t)ϕ j

n

(
x j+ 1

2

) (
ϕ

j
m

)
xx

(
x j+ 1

2

)

−un, j−1(ω, t)ϕ j−1
n

(
x j− 1

2

) (
ϕ

j
m

)
xx

(
x j− 1

2

)]

+
∫

I j

f

(
k∑

n=0

un, j (ω, t)ϕ j
n (x)

)
ϕ

j
mx (x) dx

− f̂

(
k∑

n=0

un, j (ω, t)ϕ j
n

(
x j+ 1

2

)
,

k∑
n=0

un, j+1(ω, t)ϕ j+1
n

(
x j+ 1

2

))
ϕ

j
m

(
x j+ 1

2

)

+ f̂

(
k∑

n=0

un, j−1(ω, t)ϕ j−1
n

(
x j− 1

2

)
,

k∑
n=0

un, j (ω, t)ϕ j
n

(
x j− 1

2

))
ϕ

j
m

(
x j− 1

2

)}
dt

+
∫

I j

g

(
ω, x, t,

k∑
n=0

un, j (ω, t)ϕ j
n (x)

)
ϕ

j
m(x) dx dWt .

The mass matrix A j := [A j
nm] with

A j
nm :=

∫
I j

ϕ
j
n (x)ϕ

j
m(x) dx

is invertible, and its inverse is denoted by A j,−1.
Then we obtain the following SDE of u:

du(t) = F
(
u(t)

)
dt + G

(·, t,u(t)
)

dWt , (3.7)

where for j = 1, 2, . . . , N and l = 0, 1, . . . , k,

Fl, j (u) :=
∫

I j

k∑
n=0

un, jϕ
j
n (x)

k∑
m=0

A j,−1
lm

(
ϕ

j
m

)
xxx

(x) dx

−
k∑

m=0

A j,−1
lm

k∑
n=0

[
un, j+1

(
ϕ

j+1
n

)
xx

(
x j+ 1

2

)
ϕ

j
m

(
x j+ 1

2

)

123



   61 Page 10 of 36 Journal of Scientific Computing            (2020) 82:61 

−un, j

(
ϕ

j
n

)
xx

(
x j− 1

2

)
ϕ

j
m

(
x j− 1

2

)]

+
k∑

m=0

A j,−1
lm

k∑
n=0

[
un, j+1

(
ϕ

j+1
n

)
x

(
x j+ 1

2

) (
ϕ

j
m

)
x

(
x j+ 1

2

)

−un, j

(
ϕ

j
n

)
x

(
x j− 1

2

) (
ϕ

j
m

)
x

(
x j− 1

2

)]

−
k∑

m=0

A j,−1
lm

k∑
n=0

[
un, jϕ

j
n

(
x j+ 1

2

) (
ϕ

j
m

)
xx

(
x j+ 1

2

)

−un, j−1ϕ
j−1
n

(
x j− 1

2

) (
ϕ

j
m

)
xx

(
x j− 1

2

)]

+
∫

I j

f

(
k∑

n=0

un, jϕ
j
n (x)

)
k∑

m=0

A j,−1
lm ϕ

j
mx (x) dx

− f̂

(
k∑

n=0

un, jϕ
j
n

(
x j+ 1

2

)
,

k∑
n=0

un, j+1ϕ
j+1
n

(
x j+ 1

2

)) k∑
m=0

A j,−1
lm ϕ

j
m

(
x j+ 1

2

)

+ f̂

(
k∑

n=0

un, j−1ϕ
j−1
n

(
x j− 1

2

)
,

k∑
n=0

un, jϕ
j
n

(
x j− 1

2

)) k∑
m=0

A j,−1
lm ϕ

j
m

(
x j− 1

2

)

and

Gl, j (ω, t,u) :=
∫

I j

g

(
ω, x, t,

k∑
n=0

un, jϕ
j
n (x)

)
k∑

m=0

A j,−1
lm ϕ

j
m(x) dx

with periodic settings Fl,0 = Fl,N , Fl,N+1 = Fl,1, Gl,0 = Gl,N , and Gl,N+1 = Gl,1.

Lemma 3.1 Let Assumption (H2) hold. Then for any N ∈ N+, F and G are locally Lipschitz
continuous in the variable u, i.e., for any M ∈ N+, there exists a positive constant L N (M)

such that, for all (ω, t) ∈ � × [0, T ] and all u,u′ ∈ R
(k+1)×(N+2) with |u| ∨ |u′| ≤ M,

∣∣F (u) − F
(
u′)∣∣ ∨ ∣∣G (ω, t,u) − G

(
ω, t,u′)∣∣ ≤ L N (M)

∣∣u − u′∣∣ ,
where the constant L N (M) may depend on N.

Proof We only show the locally Lipschitz continuity of G for fixed N ∈ N, and that of
F can be proved in a similar way. Note that for any l = 0, 1, . . . , k, j = 1, 2, . . . , N ,
u,u′ ∈ R

(k+1)×(N+2) with |u| ∨ |u′| ≤ M ,
∣∣Gl, j (ω, t,u) − Gl, j (ω, t,u′)

∣∣
=
∣∣∣∣∣
∫

I j

[
g

(
ω, x, t,

k∑
n=0

un, jϕ
j
n (x)

)
− g

(
ω, x, t,

k∑
n=0

u′
n, jϕ

j
n (x)

)]

×
k∑

m=0

A j,−1
lm ϕ

j
m(x) dx

∣∣∣∣∣

≤ CN (M)

k∑
n=0

∫
I j

∣∣∣ϕ j
n (x)

∣∣∣
k∑

m=0

∣∣∣ϕ j
m(x)

∣∣∣ dx
∥∥∥A j,−1

∥∥∥∞

∣∣∣un, j − u′
n, j

∣∣∣
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≤ CN (M)

k∑
n=0

∣∣∣un, j − u′
n, j

∣∣∣ ≤ CN (M)

(
k∑

n=0

∣∣∣un, j − u′
n, j

∣∣∣2
) 1

2

,

where CN (M) is a constant depending on N and M , and possibly changes from line to line.
It leads to that

∣∣G (ω, t,u) − G
(
ω, t,u′)∣∣2 =

k∑
l=0

N+1∑
j=0

∣∣Gl, j (ω, t,u) − Gl, j (ω, t,u′)
∣∣2

≤
k∑

l=0

N+1∑
j=0

CN (M)2
k∑

n=0

∣∣∣un, j − u′
n, j

∣∣∣2 = (k + 1)CN (M)2
∣∣u − u′∣∣2 .

Thus for any N , M ∈ N+, there exists a constant L N (M) such that, for all (ω, t) ∈
� × [0, T ] and all u,u′ ∈ R

(k+1)×(N+2) with |u| ∨ |u′| ≤ M ,∣∣G (ω, t,u) − G
(
ω, t,u′)∣∣ ≤ L N (M)

∣∣u − u′∣∣ .
The proof is complete. ��

Similar to the proof of Lemma 3.1, we could obtain that the coefficients of SDE (3.7)
satisfy the linearly growing condition.

Lemma 3.2 Let Assumption (H3) hold. Then for any N ∈ N+, F and G are linearly growing
in the variable u, i.e., there exists a positive constant CN such that, for all (ω, t) ∈ �×[0, T ]
and all u ∈ R

(k+1)×(N+2),

|F (u)| ∨ |G (ω, t,u)| ≤ CN (1 + |u|) ,

where the constant CN may depend on N.

By (3.1), the initial condition of the SDE (3.7) is determined by u0 as follows:

ul, j (ω, 0) :=
k∑

m=0

A j,−1
lm

∫
I j

u0(x)ϕ
j
m(x) dx . (3.8)

In the assumption (H1), u0 is assumed to be a deterministic function. Then we know that
u(0) is a deterministic matrix, which is L p(�)-integrable for any p ≥ 1. According to the
classical results of stochastic differential equations (see Mao [24]), if the initial value of the
SDE is L p(�)-integrable and the coefficients of the SDE are locally Lipschitz continuous
and linearly growing, then the considered SDE admits a unique L p-solution. Thus, for any
fixed N ∈ N+, SDE (3.7) has a unique solution {u(t)}0≤t≤T such that for any p ≥ 1,

E

[
sup

0≤t≤T
|u(t)|p

]
< ∞. (3.9)

4 Stability Analysis for the Fully Nonlinear Equations

We have known that the approximating Eq. (3.1) has a unique solution uh ∈ Vh for any fixed
N ∈ N+. Next we give the stability result for the numerical solutions.
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Theorem 4.1 Suppose that the assumptions (H1)–(H3) are satisfied. Then there exists a con-
stant C > 0 which is independent of h, such that

sup
0≤t≤T

E
[‖uh(·, t)‖2] ≤ C

(
1 + ‖uh(·, 0)‖2) ,

where the constant C may depend on the terminal time T .

Proof For any N ∈ N+ and (ω, t) ∈ �×[0, T ], by setting vh = uh(ω, ·, t) in (3.6) we have
∫

I j

uh(ω, x, t)duh(ω, x, t) dx

=
[

Hj
(
uh(ω, ·, t), uh(ω, ·, t)

) + H f
j

(
uh(ω, ·, t), uh(ω, ·, t)

)]
dt

+
∫

I j

g
(
ω, x, t, uh(ω, x, t)

)
uh(ω, x, t) dx dWt , (4.1)

where the functionals Hj and H f
j are defined by (3.4) and (3.5), respectively.

According to the Itô formula, we have for any x ∈ [0, 2π],

|uh(x, t)|2 = |uh(x, 0)|2 + 2
∫ t

0
uh(x, s) duh(x, s) + 〈uh(x, ·), uh(x, ·)〉t .

Thus, after summarizing on j from 1 to N in (4.1), integrating in time from 0 to t and
taking expectation we have

E
[‖uh(·, t)‖2] = ‖uh(·, 0)‖2 + T1(t) + T2(t) + T3(t) + T4(t),

where

T1(t) = E

[∫ 2π

0
〈uh(x, ·), uh(x, ·)〉t dx

]
,

T2(t) = 2E

[∫ t

0

∫ 2π

0
g
(
x, s, uh(x, s)

)
uh(x, s) dx dWs

]
,

T3(t) = 2E

⎡
⎣∫ t

0

N∑
j=1

Hj
(
uh (ω, ·, s) , uh (ω, ·, s)

)
ds

⎤
⎦ ,

and

T4(t) = 2E

⎡
⎣∫ t

0

N∑
j=1

H f
j

(
uh (ω, ·, s) , uh (ω, ·, s)

)
ds

⎤
⎦ .

Terms Ti (t) for i = 1, . . . , 4 are estimated as follows.
• Estimate of T1(t).
Compared with the deterministic case, the quadratic variation term is an essential addi-

tional term. The approximating solution uh is given by a weak formulation (3.6) and is not
easy to derive an explicit representation. Thus it is difficult to directly estimate the quadratic
variation of uh . However, we could use Fubini theorem and stochastic calculus to estimate
the spatial integral of the quadratic variation. In view of (3.6), we have for any rh ∈ Vh ,
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∫
I j

rh(x)uh(x, t) dx

=
∫

I j

rh(x)u0(x) dx +
∫ t

0

[
Hj

(
uh(ω, ·, s), rh

) + H f
j

(
uh(ω, ·, s), rh

)]
ds

+
∫ t

0

∫
I j

g
(
x, s, uh(x, s)

)
rh(x) dx dWs .

Thus by (2.4), for any continuous semimartingale Y , we obtain

∫
I j

rh(x) 〈uh(x, ·), Y 〉t dx =
〈∫

I j

rh(x)uh(x, ·) dx, Y

〉
t

=
〈∫ ·

0

∫
I j

g
(
x, s, uh(x, s)

)
rh(x) dx dWs, Y

〉
t

. (4.2)

It turns out that

∫
I j

〈uh(x, ·), uh(x, ·)〉t dx =
∫

I j

〈
uh(x, ·),

k∑
l=0

ul, j (·)ϕ j
l (x)

〉

t

dx

=
k∑

l=0

∫
I j

ϕ
j

l (x)
〈
uh(x, ·),ul, j (·)

〉
t dx

=
k∑

l=0

〈∫ ·

0

∫
I j

g
(
x, s, uh(x, s)

)
ϕ

j
l (x)dxdWs,ul, j (·)

〉
t

.

According to (2.3) and the properties of the L2 projection, we have

∫
I j

〈uh(x, ·), uh(x, ·)〉t dx

=
k∑

l=0

∫ t

0

∫
I j

g
(
x, s, uh(x, s)

)
ϕ

j
l (x) dx d

〈
W ,ul, j (·)

〉
s

=
∫

I j

∫ t

0

k∑
l=0

P
[
g
(·, s, uh(·, s)

)]
(x) ϕ

j
l (x) d

〈
W ,ul, j (·)

〉
s dx

=
∫

I j

∫ t

0
P
[
g
(·, s, uh(·, s)

)]
(x) d

〈
W ,

k∑
l=0

ul, j (·)ϕ j
l (x)

〉

s

dx

=
∫

I j

〈∫ ·

0
P
[
g
(·, s, uh(·, s)

)]
(x) dWs, uh(x, ·)

〉
t

dx .

Since P
[
g
(·, s, uh(·, s)

)] ∈ Vh for any (ω, s) ∈ � × [0, T ], we have

P
[
g
(
ω, ·, s, uh(ω, ·, s)

)]
(x) =

k∑
l=0

gl, j (ω, s) ϕ
j

l (x), x ∈ I j .
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By (4.2), we get the spatial integral of quadratic variation of approximating solution uh :

∫
I j

〈uh(x, ·), uh(x, ·)〉t dx =
∫

I j

〈∫ ·

0

k∑
l=0

gl, j (s) ϕ
j

l (x) dWs, uh(x, ·)
〉

t

dx

=
k∑

l=0

〈∫ ·

0

∫
I j

g
(
x, s, uh(x, s)

)
ϕ

j
l (x) dx dWs,

∫ ·

0
gl, j (s) dWs

〉
t

=
k∑

l=0

∫ t

0

∫
I j

g
(
x, s, uh(x, s)

)
ϕ

j
l (x) dx gl, j (s) d 〈W , W 〉s

=
∫ t

0

∫
I j

g
(
x, s, uh(x, s)

)
P
[
g
(·, s, uh(·, s)

)]
(x) dx ds. (4.3)

After summarizing over j from 1 to N , by Cauchy–Schwartz’s inequality we have
∫ 2π

0
〈uh(x, ·), uh(x, ·)〉t dx ≤

∫ t

0

∫ 2π

0

∣∣g(x, s, uh(x, s)
)∣∣2 dx ds.

According to (H3), after taking expectation, we have

T1(t) = E

[∫ 2π

0
〈uh(x, ·), uh(x, ·)〉t dx

]
≤ E

[∫ t

0

∫ 2π

0

∣∣g(x, s, uh(x, s)
)∣∣2 dx ds

]

≤ C + C
∫ t

0
E
[‖uh(·, s)‖2] ds.

• Estimate of T2(t).
From (3.9), we have for any fixed N ∈ N+,

E

[
sup

0≤s≤T
‖uh(·, s)‖2

]
< ∞. (4.4)

Thus by (H3) and Cauchy–Schwartz’s inequality we know that

E

⎡
⎣
(∫ T

0

∣∣∣∣
∫ 2π

0
g
(
x, s, uh(x, s)

)
uh(x, s) dx

∣∣∣∣
2

ds

) 1
2
⎤
⎦

≤ E

⎡
⎣
(∫ T

0
‖uh(·, s)‖2

∫ 2π

0

∣∣g(x, s, uh(x, s)
)∣∣2 dxds

) 1
2

⎤
⎦

≤ CE

⎡
⎣ sup
0≤s≤T

‖uh(·, s)‖
(∫ T

0

∫ 2π

0

(
1 + |uh(x, s)|2

)
dxds

) 1
2

⎤
⎦

≤ C

(
E

[
sup

0≤s≤T
‖uh(·, s)‖2

]) 1
2 (

E

[∫ T

0

(
1 + ‖uh(·, s)‖2

)
ds

]) 1
2

< ∞.

According to Lemma 2.1, the process
{∫ t

0

∫ 2π

0
g
(
x, s, uh(x, s)

)
uh(x, s) dx dWs, 0 ≤ t ≤ T

}
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is a martingale. It turns out that

T2(t) = 2E

[∫ t

0

∫ 2π

0
g
(
x, s, uh(x, s)

)
uh(x, s) dx dWs

]
= 0.

• Estimate of T3(t).
For any u ∈ Vh , we have

Hj (u, u) =
∫

I j

u (x) uxxx (x) dx − u

(
x−

j+ 1
2

)
uxx

(
x−

j+ 1
2

)
+ u

(
x−

j− 1
2

)
uxx

(
x+

j− 1
2

)

+ ux

(
x+

j+ 1
2

)
ux

(
x−

j+ 1
2

)
− ux

(
x+

j− 1
2

)
ux

(
x+

j− 1
2

)

− uxx

(
x+

j+ 1
2

)
u

(
x−

j+ 1
2

)
+ uxx

(
x+

j− 1
2

)
u

(
x+

j− 1
2

)

= −
∫

I j

ux (x) uxx (x) dx + u

(
x−

j+ 1
2

)
uxx

(
x−

j+ 1
2

)
− u

(
x+

j− 1
2

)
uxx

(
x+

j− 1
2

)

− u

(
x−

j+ 1
2

)
uxx

(
x−

j+ 1
2

)
+ u

(
x−

j− 1
2

)
uxx

(
x+

j− 1
2

)

+ ux

(
x+

j+ 1
2

)
ux

(
x−

j+ 1
2

)
− ux

(
x+

j− 1
2

)
ux

(
x+

j− 1
2

)

− uxx

(
x+

j+ 1
2

)
u

(
x−

j+ 1
2

)
+ uxx

(
x+

j− 1
2

)
u

(
x+

j− 1
2

)

= − 1

2

∣∣∣∣ux

(
x−

j+ 1
2

)∣∣∣∣
2

+ 1

2

∣∣∣∣ux

(
x+

j− 1
2

)∣∣∣∣
2

+ u

(
x−

j− 1
2

)
uxx

(
x+

j− 1
2

)

+ ux

(
x+

j+ 1
2

)
ux

(
x−

j+ 1
2

)
− ux

(
x+

j− 1
2

)
ux

(
x+

j− 1
2

)
− uxx

(
x+

j+ 1
2

)
u

(
x−

j+ 1
2

)
.

By periodicity, we get

N∑
j=1

Hj (u, u) =
N∑

j=1

[
− 1

2

∣∣∣∣ux

(
x−

j+ 1
2

)∣∣∣∣
2

+ 1

2

∣∣∣∣ux

(
x+

j+ 1
2

)∣∣∣∣
2

+ u

(
x−

j+ 1
2

)
uxx

(
x+

j+ 1
2

)

+ ux

(
x+

j+ 1
2

)
ux

(
x−

j+ 1
2

)
−
∣∣∣∣ux

(
x+

j+ 1
2

)∣∣∣∣
2

− uxx

(
x+

j+ 1
2

)
u

(
x−

j+ 1
2

)]

=
N∑

j=1

[
− 1

2

∣∣∣∣ux

(
x−

j+ 1
2

)∣∣∣∣
2

− 1

2

∣∣∣∣ux

(
x+

j+ 1
2

)∣∣∣∣
2

+ ux

(
x+

j+ 1
2

)
ux

(
x−

j+ 1
2

)]

= − 1

2

N∑
j=1

∣∣∣∣ux

(
x−

j+ 1
2

)
− ux

(
x+

j+ 1
2

)∣∣∣∣
2

.

Thus for any u ∈ Vh

N∑
j=1

Hj (u, u) ≤ 0. (4.5)
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It gives that

T3(t) = 2E

⎡
⎣∫ t

0

N∑
j=1

Hj
(
uh (ω, ·, s) , uh (ω, ·, s)

)
ds

⎤
⎦ ≤ 0.

• Estimate of T4(t).
For any u ∈ Vh , we have

N∑
j=1

H f
j

(
u, u

) =
N∑

j=1

[∫
I j

f (u) ux dx − f̂

(
u−

j+ 1
2
, u+

j+ 1
2

)
u−

j+ 1
2

+ f̂

(
u−

j− 1
2
, u+

j− 1
2

)
u+

j− 1
2

]

=
N∑

j=1

[
φ

(
u−

j+ 1
2

)
− φ

(
u+

j− 1
2

)
− f̂ j+ 1

2
u−

j+ 1
2

+ f̂ j− 1
2
u+

j− 1
2

]

=
N∑

j=1

(
F̂j+ 1

2
− F̂j− 1

2
+ � j− 1

2

)
,

where

φ(u) =
∫ u

f (a) da,

F̂j+ 1
2

= (
φ(u−) − f̂ · u−)

j+ 1
2
,

� j− 1
2

= [
φ(u−) − φ(u+) + f̂ · (u+ − u−)]

j− 1
2
.

By periodicity, we have
N∑

j=1

(
F̂j+ 1

2
− F̂j− 1

2

)
= 0.

Note that

� = φ(u−) − φ(u+) + f̂ (u−, u+)
(
u+ − u−)

= φ′(ξ)(u+ − u−) + f̂ (u−, u+)
(
u+ − u−)

= (
f̂ (u−, u+) − f̂ (ξ, ξ)

) (
u+ − u−)

= (
f̂ (u−, u+) − f̂ (u−, ξ) + f̂ (u−, ξ) − f̂ (ξ, ξ)

) (
u+ − u−) ≤ 0,

where ξ is a real number between u− and u+. Thus for any u ∈ Vh

N∑
j=1

H f
j

(
u, u

) ≤ 0. (4.6)

It turns out that

T4(t) = 2E

⎡
⎣∫ t

0

N∑
j=1

H f
j

(
uh (ω, ·, s) , uh (ω, ·, s)

)
ds

⎤
⎦ ≤ 0.

Then there exists a positive constant C which is independent of h, such that for any
t ∈ [0, T ],

E
[‖uh(·, t)‖2] ≤ ‖uh(·, 0)‖2 + C + C

∫ t

0
E
[‖uh(·, s)‖2] ds.
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Using Gronwall’s inequality, we have for any t ∈ [0, T ],
E
[‖uh(·, t)‖2] ≤ (

C + ‖uh(·, 0)‖2) eCt .

This completes the proof. ��

5 Optimal Error Estimates for Semilinear Equations

In this section, we consider the convergence of numerical method for strong solutions with
enough smoothness and integrability. We prove the optimal error estimates (O(hk+1)) with
respect to spatial L2(0, 2π)-norm for the semilinear case that f (u) := 0,{

du = −uxxx dt + g(·, x, t, u) dWt , (x, t) ∈ [0, 2π] × (0, T ];
u(x, 0) = u0(x), x ∈ [0, 2π]. (5.1)

In the semilinear case, the ultra-weak DG method (3.1) can be written as follows. For any
(ω, t) ∈ � × [0, T ], find uh(ω, ·, t) ∈ Vh such that for any vh ∈ Vh ,∫

I j

vh(x)duh(ω, x, t) dx = Hj
(
uh(ω, ·, t), vh

)
dt

+
∫

I j

g
(
ω, x, t, uh(ω, x, t)

)
vh(x)dxdWt , (5.2)

where the bilinear functional Hj is defined by (3.4). Then, we state the error estimates of the
semi-discrete ultra-weak DG scheme (5.2).

Theorem 5.1 Suppose that u0 ∈ Hk+1 with k ≥ 2, the coefficient g(·) is uniformly Lipschitz
continuous in u, and Eq. (5.1) has a unique strong solution u(·) such that

(H4) u(·) ∈ L2
(
� × [0, T ]; Hk+4

)⋂
S2

(
� × [0, T ]; L2

)⋂
L∞ (

0, T ; L2(�; Hk+1)
)
;

(H5) g (·, u(·)) ∈ L2
(
� × [0, T ]; Hk+1

)
.

Then, there is a positive constant C which is independent of h, such that

sup
t∈[0,T ]

(
E
[‖u(·, t) − uh(·, t)‖2]) 1

2 ≤ Chk+1, (5.3)

where the constant C may depend on the terminal time T .

Proof Note that the scheme (5.2) is also satisfiedwhen the numerical solutionuh(·) is replaced
with the exact solution u(·): for any (ω, t) ∈ � × [0, T ] and vh ∈ Vh , we have∫

I j

vh(x)du(ω, x, t) dx = Hj
(
u(ω, ·, t), vh

)
dt +

∫
I j

g
(
ω, x, t, u(ω, x, t)

)
vh(x) dx dWt .

Define
e(ω, x, t) := (u − uh)(ω, x, t) = (ξ − η)(ω, x, t),

with
ξ(ω, x, t) := (Qu − uh)(ω, x, t), η(ω, x, t) := (Qu − u)(ω, x, t)

where Q is the projection from Hk+1 onto Vh defined in (2.1).
Then the error equation is∫

I j

vh(x) d e(ω, x, t) dx
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= Hj
(
e(ω, ·, t), vh

)
dt +

∫
I j

[
g
(
ω, x, t, u(ω, x, t)

)

− g
(
ω, x, t, uh(ω, x, t)

)]
vh(x)dxdWt .

Taking vh = ξ(ω, ·, t), we have

∫
I j

ξ(x, t)dξ(x, t)dx =
∫

I j

ξ(x, t)dη(x, t)dx +
[

Hj
(
ξ(·, t), ξ(·, t)

) − Hj
(
η(·, t), ξ(·, t)

)]
dt

+
∫

I j

[
g
(
x, t, u(x, t)

) − g
(
x, t, uh(x, t)

)]
ξ(x, t) dx dWt .

Using the Itô’s formula, we have for any x ∈ [0, 2π],
d |ξ(x, t)|2 = 2ξ(x, t) dξ(x, t) + d 〈ξ(x, ·), ξ(x, ·)〉t .

Then, we have

E
[‖ξ(·, t)‖2] = ‖ξ(·, 0)‖2 + T1(t) + T2(t) + T3(t) + T4(t) + T5(t)

where

T1(t) := 2E

[∫ 2π

0

∫ t

0
ξ(x, s)dη(x, s) dx

]
,

T2(t) := E

[∫ 2π

0
〈ξ(x, ·), ξ(x, ·)〉t dx

]
,

T3(t) := 2E

⎡
⎣∫ t

0

N∑
j=1

Hj
(
ξ(·, s), ξ(·, s)

)
ds

⎤
⎦ ,

T4(t) := − 2E

⎡
⎣∫ t

0

N∑
j=1

Hj
(
η(·, s), ξ(·, s)

)
ds

⎤
⎦ ,

and

T5(t) := 2E

[∫ t

0

∫ 2π

0

[
g (x, s, u(x, s)) − g (x, s, uh(x, s))

]
ξ(x, s) dx dWs

]
.

The terms Ti (t) for i = 1, . . . , 5 are estimated as follows.
• Estimate of T1(t).
In view of (5.1), we have

dt (Qu)(·, t) = Q(dt u)(·, t) = −Q [uxxx (·, t)] dt + Q [g(·, t, u(·, t))] dWt . (5.4)

Therefore,

dη(·, t) = −(Quxxx − uxxx )(·, t) dt + (Q − I)g(·, t, u(·, t)) dWt

with I being the identity operator.
It turns out that∫ 2π

0
ξ(x, t) dη(x, t) dx = −

∫ 2π

0
ξ(x, t) (Quxxx − uxxx ) (x, t)dxdt

+
∫ 2π

0
ξ(x, t) (Q − I)

[
g(·, t, u(·, t))

]
(x) dx dWt .
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Since u(·) ∈ S2
(
� × [0, T ]; L2

)
, we have Qu(·) ∈ S2

(
� × [0, T ]; L2

)
. By (4.4), we

get

E

[
sup

0≤s≤T
‖ξ(·, s)‖2

]
< ∞.

Thus by virtue of (H3) and Cauchy–Schwartz’s inequality we know that

E

⎡
⎣
(∫ T

0

∣∣∣∣
∫ 2π

0
ξ(x, s) (Q − I)

[
g(·, t, u(·, s))

]
(x) dx

∣∣∣∣
2

ds

) 1
2
⎤
⎦

≤ E

⎡
⎣
(∫ T

0
‖ξ(·, s)‖2

∫ 2π

0

∣∣(Q − I)
[
g(·, s, u(·, s))

]∣∣2 (x) dxds

) 1
2

⎤
⎦

≤ CE

⎡
⎣ sup
0≤s≤T

‖ξ(·, s)‖
(∫ T

0

∫ 2π

0

(
1 + |u(x, s)|2

)
dxds

) 1
2

⎤
⎦

≤ C

(
E

[
sup

0≤s≤T
‖ξ(·, s)‖2

]) 1
2 (

E

[∫ T

0

(
1 + ‖u(·, s)‖2

)
ds

]) 1
2

< ∞. (5.5)

According to Lemma 2.1, we could verify that the process∫ t

0

∫ 2π

0
ξ(x, s) (Q − I)

[
g(·, s, u(·, s))

]
(x) dx dWs, 0 ≤ t ≤ T

is a martingale. Thus according to the property of the projection (2.2), we have

T1(t) = − 2E

[ ∫ t

0

∫ 2π

0
ξ(x, s) (Quxxx − uxxx ) (x, s)dxds

]

≤ E

[∫ t

0

(
‖ξ (·, s)‖2 + ‖(Quxxx − uxxx ) (·, s)‖2

)
ds

]

≤
∫ t

0
E ‖ξ (·, s)‖2 ds + Ch2k+2

E

[∫ t

0
‖uxxx (·, s)‖2Hk+1 ds

]
.

Since

u ∈ L2
(
� × [0, T ]; Hk+4

)
,

we have

T1(t) ≤
∫ t

0
E ‖ξ (·, s)‖2 ds + C h2k+2.

• Estimate of T2(t).
In view of (5.4), we have that for any vh ∈ Vh ,∫

I j

vh(x)dQu(x, t) dx

= −
∫

I j

vh(x)Q [uxxx (·, t)] (x)dxdt

+
∫

I j

vh(x)Q
[
g(·, t, u(·, t)

]
(x) dx dWt . (5.6)
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From (5.2) and (5.6), we obtain that for any vh ∈ Vh ,∫
I j

vh(x)dξ(x, t)dx = −
{∫

I j

vh(x)Q [uxxx (·, t)] (x) dx + Hj
(
uh(·, t), vh

)}
dt

+
∫

I j

vh(x)
{
Q
[
g(·, t, u(·, t)

]

−g
(·, t, uh(·, t)

)}
(x)dxdWt . (5.7)

Since ξ(ω, ·, t) ∈ Vh for any (ω, t) ∈ � × [0, T ], then ξ(·) should have the form

ξ(ω, x, t) =
k∑

l=0

ξ̃l, j (ω, t)ϕ j
l (x), x ∈ I j .

Similar to (4.3), we have from (5.7) that
∫

I j

〈ξ(x, ·), ξ(x, ·)〉t dx =
∫ t

0

∫
I j

(
P
{
Q
[
g(·, s, u(·, s))

] − g
(·, s, uh(·, s)

)}
(x)

× {
Q
[
g(·, s, u(·, s))

] − g
(·, s, uh(·, s)

)}
(x)

)
dxds

≤
∫ t

0

∫
I j

∣∣Q[
g(·, s, u(·, s))

] − g
(·, s, uh(·, s)

)∣∣2(x) dx ds.

Then we get

T2(t) = E

[∫ 2π

0
〈ξ(x, ·), ξ(x, ·)〉t dx

]

≤ E

[∫ t

0

∫ 2π

0

∣∣Q[
g(·, s, u(·, s))

] − g
(·, s, uh(·, s)

)∣∣2(x) dx ds

]

≤ 2E

[∫ t

0

∫ 2π

0

∣∣ (Q − I) g
(·, s, u(·, s)

)∣∣2(x) dx ds

]

+2E

[∫ t

0

∫ 2π

0

∣∣g(x, s, u(x, s)
) − g

(
x, s, uh(x, s)

)∣∣2 dx ds

]
.

According to (H5) and the property of the projection, we have

T2(t) ≤ Ch2k+2
E

[∫ t

0
‖g(·, s, u(·, s))‖2Hk+1 ds

]

+ CE

∫ t

0

∫ 2π

0

[|η(x, s)|2 + |ξ(x, s)|2] dx ds

≤ Ch2k+2 + Ch2k+2
E

[∫ t

0
‖u(·, s)‖2Hk+1 ds

]
+ CE

[∫ t

0
‖ξ(·, s)‖2 ds

]
.

Since u ∈ L2
(
� × [0, T ]; Hk+4

) ⊆ L2
(
� × [0, T ]; Hk+1

)
, we have

T2(t) ≤ Ch2k+2 + C
∫ t

0
E
[‖ξ(·, s)‖2] ds.

• Estimate of T3(t).
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According to (4.5), for any u ∈ Vh , we have

N∑
j=1

Hj (u, u) ≤ 0.

Since ξ(ω, ·, t) is in Vh for any (ω, t) ∈ � × [0, T ], we get

T3(t) = 2E

⎡
⎣∫ t

0

N∑
j=1

Hj
(
ξ(·, s), ξ(·, s)

)
ds

⎤
⎦ ≤ 0,

• Estimate of T4(t).
By the definition of the projectionsQ (see (2.1)), we see that for any (ω, t) ∈ � × [0, T ],

j = 1, 2, . . . , N , ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
I j

η (ω, x, t) r(x) dx = 0, ∀r ∈ Pk−3(I j ),

η

(
ω, x−

j+ 1
2
, t

)
= 0,

ηx

(
ω, x+

j− 1
2
, t

)
= 0,

ηxx

(
ω, x+

j− 1
2
, t

)
= 0.

(5.8)

According to (3.4), we have for any v ∈ Vh ,

Hj (η (ω, ·, t) , v) =
∫

I j

η (ω, x, t) vxxx (x) dx

− η

(
ω, x−

j+ 1
2
, t

)
vxx

(
x−

j+ 1
2

)
+ η

(
ω, x−

j− 1
2
, t

)
vxx

(
x+

j− 1
2

)

+ ηx

(
ω, x+

j+ 1
2
, t

)
vx

(
x−

j+ 1
2

)
− ηx

(
ω, x+

j− 1
2
, t

)
vx

(
x+

j− 1
2

)

−ηxx

(
ω, x+

j+ 1
2
, t

)
v

(
x−

j+ 1
2

)
+ ηxx

(
ω, x+

j− 1
2
, t

)
v

(
x+

j− 1
2

)
= 0.

Since ξ(ω, ·, t) ∈ Vh , we have

T4(t) = − 2E

⎡
⎣∫ t

0

N∑
j=1

Hj
(
η(·, s), ξ(·, s)

)
ds

⎤
⎦ = 0.

• Estimate of T5(t).
By virtue of (4.4) and u(·) ∈ S2

(
� × [0, T ]; L2

)
, similar to (5.5), we get

E

⎡
⎣
(∫ T

0

∣∣∣∣
∫ 2π

0
[g (x, s, u(x, s))) − g (x, s, uh(x, s))] ξ(x, s) dx

∣∣∣∣
2

ds

) 1
2
⎤
⎦ < ∞.

According to Lemma 2.1, we see that the process
∫ t

0

∫ 2π

0
[g (x, s, u(x, s))) − g (x, s, uh(x, s))] ξ(x, s) dxdWs, 0 ≤ t ≤ T
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is a martingale. Thus,

T5(t) = 2E

[∫ t

0

∫ 2π

0

[
g (x, s, u(x, s)) − g (x, s, uh(x, s))

]
ξ(x, s) dx dWs

]
= 0.

Concluding the above, we have

E
[‖ξ(·, t)‖2] ≤ ‖ξ(·, 0)‖2 + Ch2k+2 + C

∫ t

0
E
[‖ξ(·, s)‖2] ds.

Since ‖ξ(·, 0)‖ = ‖Qu0 − Pu0‖ ≤ Chk+1 ‖u0‖Hk+1 , we have from Gronwall’s inequal-
ity that

(
E
[‖ξ(·, t)‖2]) 1

2 ≤ Chk+1eCt .

Since u ∈ L∞ (
0, T ; L2(�; Hk+1)

)
, we have

(
E
[‖η(·, t)‖2]) 1

2 ≤ C
(
E
[‖u(·, t)‖2Hk+1

]) 1
2 hk+1 ≤ Chk+1.

It turns out that

(
E
[‖u(·, t) − uh(·, t)‖2]) 1

2 ≤ (
E
[‖ξ(·, t)‖2]) 1

2 + (
E
[‖η(·, t)‖2]) 1

2 ≤ CeCt hk+1.

��

Remark 5.1 It should be pointed out that the regularity condition (H4) seems to be stringent.
We find no literature on the regularity of a strong solution to Eq. (5.1). However, our examples
(see (7.1)–(7.3)) demonstrate that there is a sufficiently broad class of problems satisfying
assumption (H4), as long as the corresponding deterministic initial values u0 have enough
regularities.

On the other hand, in practice if such regularities could not be achieved, we could consider
the weak version of the scheme. We only need to assume that the coefficient g(·) satisfies
some regularity such that Eq. (5.1) has a unique strong solution u(·) and the processes
∫ t

0

∫
I j

g(x, s, u(x, s)) dx dWs,

∫ t

0

∫
I j

g(x, s, uh(x, s))vh(x) dx dWs, 0 ≤ t ≤ T

are martingales. Then by taking expectation on both sides of (5.1) and (5.2), we get
{

ūt = − ūxxx , (x, t) ∈ [0, 2π] × (0, T ];
ū(x, 0) = u0(x), x ∈ [0, 2π ]. (5.9)

and ∫
I j

vh(x) (ūh)t (x, t) dx = Hj
(
ūh(·, t), vh

)
, (5.10)

where ū = E [u] and ūh = E [uh]. We see that (5.9) is the simple third-order deterministic
PDE and (5.10) is the corresponding classical ultra-weak DG method. In this case, though
we could not get the strong result (5.3), we still could obtain the weak result without (H4)
and (H5)

sup
t∈[0,T ]

‖E [u(·, t) − uh(·, t)]‖ ≤ Chk+1.
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Remark 5.2 In the estimation of T4(t), it is essential to set k ≥ 2 to get the error estimate. If
k < 2, then we could not well define the projectionQ as (2.1), which leads to that (5.8) will
not hold and T4(t) cannot be estimated. This is also the case for deterministic KdV equations.
When k < 2, numerical experiments in Sect. 7 also show that our scheme is not consistent.

Remark 5.3 In the deterministic setting, the ultra-weak DG method focuses on high-order
convergence of strong solution. As the stochastic counterpart, we naturally consider the high-
order convergence of strong solution. As a consequence, the mean-square convergence for
stochastic KdV equations is considered. Note that the mean-square convergence could also
derive the weak convergence.

Remark 5.4 The solutions of the stochastic KdV equations rarely have a uniform bound with
respect to the variable ω ∈ �. Thus it is difficult to use the method in Zhang and Shu [35]
to get error estimates for the stochastic equation containing the nonlinear term f (·), which
requires the uniform boundedness of the approximate solutions. But interestingly, numerical
examples in Sect. 7.3 verify the optimal order O(hk+1) for nonlinear stochastic equations.

6 IMEX Time Discretization

The ultra-weak DG method incorporates the spatial discretization and reduces the primal
SPDE into a system of SDEs, which needs to be coupled with a high-order time discretiza-
tion. The second-order explicit methods used in [21] are stable, efficient and accurate for
solving hyperbolic conservation laws. However, KdV equations contain third-order spatial
derivatives. For these problems which are not convection-dominated, explicit time discretiza-
tion will suffer from a stringent time-step restriction�t ∼ (�x)3 for stability.When it comes
to such problems, a natural consideration to overcome the small time-step restriction is to
use implicit time-marching.

Implicit schemes are thoroughly discussed in [26], motivated by long-time integration
with geometry-preserving properties. These properties could well fit the need for long-time
integration. Also, implicit schemes (e.g., midpoint scheme) may provide the computational
reduction for numerical SDEs with a single noise.

In fact, in many applications the convection terms are often nonlinear; hence it would be
desirable to treat them explicitly while using implicit time discretization only for the third-
order linear term in the KdV equations. Such time discretizations are called implicit–explicit
(IMEX) time discretizations [1].

Wang et al. [32] proposed a second order IMEX time discretization scheme for local
discontinuous Galerkin method, which is unconditionally stable for the nonlinear problems,
in the sense that the time-step �t is only required to be upper-bounded by a positive constant
which depends on the flow velocity and the diffusion coefficient, but is independent of the
mesh size�x .Motivated by them,we give an implementable second order time discretization
for matrix-valued SDE⎧⎨

⎩
d Xi, j

t =
[
ai, j
1 (Xt ) + ai, j

2 (Xt )
]

dt + bi, j (Xt ) dWt , t > 0;
Xi, j
0 = xi, j

0 ,

(6.1)

where i = 0, 1, . . . , k and j = 0, 1, . . . , N + 1. The coefficients a1(·) and a2(·) come from
the spatial discretization for the linear third order term uxxx and the nonlinear first order
term f (u)x in (1.1), respectively. In particular, for the degenerate case that b(·) ≡ 0, our
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approximate scheme for SDE (6.1) given in this section coincides with the one for the ODE
in [32].

We aim to use Y i, j
n to approximate Xi, j

tn . Define Y i, j
0 := xi, j

0 . Suppose we already have

{Y i, j
n : i = 0, 1, . . . , k and j = 0, 1, . . . , N + 1}. Define the following operators

L0 f :=
N+1∑
j=0

k∑
i=0

ai, j ∂ f

∂xi j
+ 1

2

N+1∑
l, j=0

k∑
m,i=0

bi, j bm,l ∂2 f

∂xi j∂xml
,

and

L1 f :=
N+1∑
j=0

k∑
i=0

bi, j ∂ f

∂xi j
,

where and f : R(k+1)×(N+2) −→ R is twice differentiable.
Set

�n = tn+1 − tn, �Wn = Wtn+1 − Wtn ,

and

�Zn =
∫ tn+1

tn

(
Ws − Wtn

)
ds, �Un =

∫ tn+1

tn

(
Ws − Wtn

)2
ds.

6.1 Second Order Strong Taylor Scheme

As indicated in [19], we could not directly use implicit scheme for the stochastic diffusion
term b(·). For instance, if we apply the fully implicit Euler scheme

Yn+1 = Yn + a(Yn+1)�n + b(Yn+1)�Wn, (6.2)

to the 1-dimensional homogeneous linear SDE

d Xt = a Xt dt + b Xt dWt ,

then we obtain

Yn = Y0

n−1∏
i=0

1

1 − a�i − b�Wi
.

However, this expression is not suitable as an approximation because one of its factors may
become infinite. In fact, the first absolute moment E [|Yn |] does not exist. It seems then
that fully implicit methods involving unbounded random variables, such as (6.2), are not
suitable. Thus, not only for a2(·), we also consider explicit scheme for the diffusion term
b(·), with implicit terms obtained from the corresponding Taylor approximation by suitably
modifying the coefficient functions of the nonrandom multiple stochastic integrals �n and
�2

n . Motivated by the ideas in [19, Chapter 12], we have an implicit second order strong
Taylor scheme as follows

Y i, j
n+1 = Y i, j

n + ai, j
2 (Yn)�n + 1

2
L0ai, j

2 (Yn)�2
n + bi, j (Yn)�Wn

+ γ ai, j
1 (Yn+1)�n + (1 − γ ) ai, j

1 (Yn)�n +
(
1

2
− γ

)
L0ai, j

1 (Yn)�2
n

+ 1

2
L1bi, j (Yn)

{
(�Wn)2 − �n

} + L0bi, j (Yn) {�Wn�n − �Zn}
+L1ai, j

1 (Yn) {�Zn − γ�Wn�n} + L1ai, j
2 (Yn)�Zn
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+L1L1ai, j
2 (Yn)

{
1

2
�Un − 1

4
�2

n

}

+L1L1ai, j
1 (Yn)

{
1

2
�Un − 1

4
�2

n − γ

2
�n

(
�W 2

n − �n
)}

+ 1

6
L1L1bi, j (Yn)

{
(�Wn)2 − 3�n

}
�Wn + L1L0bi, j (Yn) {−�Un + �Wn�Zn}

+L0L1bi, j (Yn)

{
1

2
�Un − �Wn�Zn + 1

2
(�Wn)2 �n − 1

4
�2

n

}

+ 1

24
L1L1L1bi, j (Yn)

{
(�Wn)4 − 6 (�Wn)2 �n + 3�2

n

}
, (6.3)

where γ = 1 −
√
2
2 .

6.2 Second Order Implicit–Explicit Strong Scheme

Adisadvantage of the strong Taylor approximations is that the derivatives of various orders of
the drift and diffusion coefficientsmust be evaluated at each step, in addition to the coefficients
themselves. This can make implementation of such schemes a complicated undertaking. In
this subsection we will propose a strong scheme which avoids the usage of derivatives in
much the same way that Runge–Kutta schemes do in the deterministic setting.

6.2.1 Derivative-Free Scheme

Following the idea of [19],we could derive a second order derivative-free schemeby replacing
the derivatives in the second order strong Taylor scheme (6.3) by the corresponding finite
differences.

We set



m,l
± = Y m,l

n + am,l(Yn)�n ± bm,l(Yn)
√

�n,

η
m,l
± = Y m,l

n ± bm,l(Yn)�n;
φ

m,l
+,± = 


m,l
+ + am,l(
+)�n ± bm,l(
+)

√
�n,

φ
m,l
−,± = 


m,l
− + am,l(
−)�n ± bm,l(
−)

√
�n;

β
m,l
+,± = φ

m,l
+,+ ± bm,l(φ+,+)

√
�n,

β
m,l
−,± = φ

m,l
+,− ± bm,l(φ+,−)

√
�n;

θ
m,l
± = Y m,l

n + γ am,l
1 (θ±)�n + γ am,l

2 (Yn)�n ± bm,l(Yn)
√

γ�n . (6.4)

For a sufficiently smooth function f : R(k+1)×(N+2) −→ R, we have

L1 f i, j (Yn) = 1

2�n

{
f i, j (η+) − f i, j (η−)

}
+ O(�2

n),

L1 f i, j (Yn) = 1

2
√

�n

{
f i, j (
+) − f i, j (
−)

}
+ O(�n),

L0 f i, j (Yn) = 1

2�n

{
f i, j (
+) − 2 f i, j (Yn) + f i, j (
−)

}
+ O(�n),

f i, j (Yn) + γL0 f i, j (Yn)�n = 1

2

[
f i, j (θ+) + f i, j (θ−)

]
+ O(�

3
2
n ),

123



   61 Page 26 of 36 Journal of Scientific Computing            (2020) 82:61 

L1L1 f i, j (Yn) = 1

4�n

{
f i, j (φ+,+) − f i, j (φ+,−) − f i, j (φ−,+)

+ f i, j (φ−,−)
}

+ O(�n),

L1L1 f i, j (Yn) = 1

2�n

{
f i, j (φ+,+) − f i, j (φ+,−) − f i, j (
+)

+ f i, j (
−)
}

+ O(
√

�n),

L1L0 f i, j (Yn) = 1

2�
3
2
n

{
f i, j (φ+,+) + f i, j (φ+,−) − 3 f i, j (
+)

− f i, j (
−) + 2 f i, j (Yn)

}
+ O(

√
�n),

L0L1 f i, j (Yn) = 1

4�
3
2
n

{
f i, j (φ+,+) − f i, j (φ+,−) + f i, j (φ−,+)

− f i, j (φ−,−) − 2 f i, j (
+) + 2 f i, j (
−)

}
+ O(

√
�n),

L1L1L1 f i, j (Yn) = 1

4�
3
2
n

{
f i, j (β+,+) − f i, j (β+,−) − f i, j (β−,+)

+ f i, j (β−,−) − f i, j (φ+,+)

+ f i, j (φ+,−) + f i, j (φ−,+) − f i, j (φ−,−)

}
+ O(

√
�n).

Then scheme (6.3) reads

Y i, j
n+1 = Y i, j

n + δai, j
2 (Yn)�n + 1

2
(1 − δ)

{
ai, j
2 (θ+) + ai, j

2 (θ−)
}

�n + bi, j (Yn)�Wn

+ γ ai, j
1 (Yn+1)�n + 1

2
(1 − γ )

{
ai, j
1 (θ+) + ai, j

1 (θ−)
}

�n

+ 1

4�n

{
bi, j (η+) − bi, j (η−)

} {
(�Wn)2 − �n

}

+ 1

2�n

{
bi, j (
+) − 2bi, j (Yn) + bi, j (
−)

}
{�Wn�n − �Zn}

+ 1

2
√

�n

{
ai, j
1 (
+) − ai, j

1 (
−)
}

{�Zn − γ�Wn�n}

+ 1

2
√

�n

{
ai, j
2 (
+) − ai, j

2 (
−)
}

�Zn

+ 1

2�n

{
ai, j
2 (φ+,+) − ai, j

2 (φ+,−) − ai, j
2 (
+) + ai, j

2 (
−)
}{1

2
�Un − 1

4
�2

n

}

+ 1

2�n

{
ai, j
1 (φ+,+) − ai, j

1 (φ+,−) − ai, j
1 (
+) + ai, j

1 (
−)
}

×
{
1

2
�Un − 1

4
�2

n − γ

2
�n

(
�W 2

n − �n
)}

+ 1

8�n

{
bi, j (φ+,+) − bi, j (φ+,−) − bi, j (φ−,+) + bi, j (φ−,−)

}
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×
{
1

3
(�Wn)2 − �n

}
�Wn

+ 1

2�
3
2
n

{
bi, j (φ+,+) + bi, j (φ+,−) − 3bi, j (
+) − bi, j (
−) + 2bi, j (Yn)

}

×{−�Un + �Wn�Zn}
+ 1

4�
3
2
n

{
bi, j (φ+,+) − bi, j (φ+,−) + bi, j (φ−,+) − bi, j (φ−,−)

− 2bi, j (
+) + 2bi, j (
−)
}

×
{
1

2
�Un − �Wn�Zn + 1

2
(�Wn)2 �n − 1

4
�2

n

}

+ 1

96�
3
2
n

{
bi, j (β+,+) − bi, j (β+,−) − bi, j (β−,+) + bi, j (β−,−)

− bi, j (φ+,+) + bi, j (φ+,−) + bi, j (φ−,+) − bi, j (φ−,−)

}

× {
(�Wn)4 − 6 (�Wn)2 �n + 3�2

n

}
, (6.5)

where δ = 1 − 1
2γ .

6.2.2 Modeling of the Itô Integrals

We have proposed a derivative-free scheme (6.5). Now it remains to model at each step three
random variables �Wn , �Zn and �Un . In [25], the characteristic function of these random
variables is found. However, it is very complicated and cannot be easily used in practice.
Thus, the exact modeling has poor perspectives, and therefore we need to be able to model
these variables approximately. The detailed method of modeling can be found in [26].

Introduce the new process

v(s) = Wtn+�ns − Wtn√
�n

, 0 ≤ s ≤ 1.

It is obvious that {v(s), 0 ≤ s ≤ 1} is a standard Wiener process. We have

�Wn = �
1
2
n v(1), �Zn = �

3
2
n

∫ 1

0
v(s) ds, �Un = �2

n

∫ 1

0
v2(s) ds.

Then the problemofmodeling the randomvariables�Wn ,�Zn and�Un could be reduced
to that of modeling the variables v(1),

∫ 1
0 v(s) ds and

∫ 1
0 v2(s) ds. These variables are the

solution of the system of equations
⎧⎨
⎩

dx = dv(s), x(0) = 0,
dy = x ds, y(0) = 0,
dz = x2 ds, z(0) = 0,

(6.6)

at the moment s = 1.
Let xk = x̄(sk), yk = ȳ(sk), zk = z̄(sk), 0 = s0 < s1 < · · · < sNn = 1, sk+1 − sk = δn =

1
Nn

, be an approximate solution of (6.6), where Nn is to be determined. We will now use a
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method of order 1.5 to integrate (6.6).⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk+1 = xk + (v(sk+1) − v(sk)),

yk+1 = yk + xkδn +
∫ sk+1

sk

(v(θ) − v(sk)) dθ,

zk+1 = zk + x2k δn + 2xk

∫ sk+1

sk

(v(θ) − v(sk)) dθ + δ2n

2
.

(6.7)

The pair of correlated normally distributed random variables v(sk+1) − v(sk) and∫ sk+1
sk

(v(θ) − v(sk)) dθ are generated by

v(sk+1) − v(sk) = ζk,1δ
1
2
n ,

∫ sk+1

sk

(v(θ) − v(sk)) dθ = 1

2

(
ζk,1 + 1√

3
ζk,2

)
δ
3
2
n , (6.8)

where ζk,1 and ζk,2 are independent normally N (0; 1) distributed random variables.

We choose δn such that δn = O(�
1
3
n ) i.e.

Nn =
⌈
�

− 1
3

n

⌉
, (6.9)

with �·� standing for the ceiling function.

Then we have �
1
2
n xNn = �Wn , �

3
2
n yNn = �Zn and

(
E

[∣∣�2
nzNn − �Un

∣∣2]) 1
2 = O

(
�

5
2
n

)
.

Thus according to [26, Theorem 4.2, page 50], in a method of second order of accuracy

with time step �n such as scheme (6.5), we could replace �Wn , �Zn and �Un by �
1
2
n xNn ,

�
3
2
n yNn and �2

nzNn independently at each step. Finally, we get an implementable second
order derivative-free time discretization scheme,

Y i, j
n+1 = Y i, j

n + δai, j
2 (Yn)�n + 1

2
(1 − δ)

{
ai, j
2 (θ+) + ai, j

2 (θ−)
}

�n + bi, j (Yn)xNn

√
�n

+γ ai, j
1 (Yn+1)�n + 1

2
(1 − γ )

{
ai, j
1 (θ+) + ai, j

1 (θ−)
}

�n

+1

4

{
bi, j (η+) − bi, j (η−)

} {
x2Nn

− 1
}

+ 1

2

{
bi, j (
+) − 2bi, j (Yn) + bi, j (
−)

} {
xNn − yNn

}√
�n

+1

2

{
ai, j
1 (
+) − ai, j

1 (
−)
} {

yNn − γ xNn

}
�n

+ 1

2

{
ai, j
2 (
+) − ai, j

2 (
−)
}

yNn �n

+ 1

4

{
ai, j
2 (φ+,+) − ai, j

2 (φ+,−) − ai, j
2 (
+) + ai, j

2 (
−)
}{

zNn − 1

2

}
�n

+1

4

{
ai, j
1 (φ+,+) − ai, j

1 (φ+,−) − ai, j
1 (
+) + ai, j

1 (
−)
}

×
{

zNn − 1

2
+ γ − γ x2Nn

}
�n

+ 1

8

{
bi, j (φ+,+) − bi, j (φ+,−) − bi, j (φ−,+) + bi, j (φ−,−)

}
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×
{
1

3
x2Nn

− 1

}
xNn

√
�n

+ 1

2

{
bi, j (φ+,+) + bi, j (φ+,−) − 3bi, j (
+) − bi, j (
−) + 2bi, j (Yn)

}

× {
xNn yNn − zNn

}√
�n

+ 1

4

{
bi, j (φ+,+) − bi, j (φ+,−) + bi, j (φ−,+) − bi, j (φ−,−)

− 2bi, j (
+) + 2bi, j (
−)
}

×
{
1

2
zNn − xNn yNn + 1

2
x2Nn

− 1

4

}√
�n

+ 1

96

{
bi, j (β+,+) − bi, j (β+,−) − bi, j (β−,+) + bi, j (β−,−)

− bi, j (φ+,+) + bi, j (φ+,−) + bi, j (φ−,+) − bi, j (φ−,−)

}

× {
x4Nn

− 6x2Nn
+ 3

}√
�n, (6.10)

where xNn , yNn , zNn are computed by (6.7)–(6.9), and 
±, η±, θ±, φ±,±, β±,± are calculated
by (6.4).

6.3 Numerical Tests for IMEX Time Discretization

Now we apply the time discretization (6.10) to some SDEs for verifying the second-order
accuracy of the IMEX scheme. The positive real number T is the terminal time and the time-
step is given by �t = T /NT . We use M = 15,000 realizations for Monte Carlo technique
to approximate the L2(�)-errors

E

[∣∣YNT − XT
∣∣2] ≈ e22 ± V ,

with

e2 :=
(

1

M

M∑
i=1

zi

) 1
2

, V := 2√
M

⎡
⎣ 1

M

M∑
i=1

z2i −
(

1

M

M∑
i=1

zi

)2⎤
⎦

1
2

,

where zi := ∣∣YNT (ωi ) − XT (ωi )
∣∣2, YNT (ωi ) is one simulation from M paths, and XT (ωi ) is

the exact solution with the corresponding path ωi .

6.3.1 Linear Case

Let us first consider the following linear SDEs:
{

d Xt = (c1Xt + c2Xt ) dt + c3Xt dWt (ω, t) ∈ � × (0, T ],
X0 = x0, ω ∈ �,

(6.11)

where c1, c2, c3, x0 are fixed real numbers. The exact solution of (6.11) is

Xt (ω) = x0 ec1t+c2t+c3Wt (ω)− 1
2 c23 t .
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Table 1 Accuracy on (6.11) with
M = 15,000, c1 = − 1.5,
c2 = − 1.0, c3 = x0 = 1.0,
T = 0.1

NT e2 Order V

10 8.58E−05 – 1.94E−10

20 2.13E−05 2.01 1.31E−11

40 5.32E−06 2.00 9.44E−13

80 1.36E−06 1.96 6.76E−14

160 3.42E−07 2.00 4.21E−15

320 8.48E−08 2.01 2.80E−16

Table 2 Accuracy on (6.12) with
M = 15,000, c4 = 1.0,
c5 = − 1.0, T = 0.1

NT e2 Order V

10 2.13E−05 – 2.50E−11

20 5.42E−06 1.98 1.30E−12

40 1.38E−06 1.98 8.26E−14

80 3.39E−07 2.02 4.16E−15

160 8.60E−08 1.98 4.61E−16

320 2.11E−08 2.03 1.68E−17

In this case, we have

a1(x) = c1x, a2(x) = c2x, b(x) = c3x .

We use IMEX scheme (6.10) on Eq. (6.11), in which we use implicit scheme for a1(·) and
explicit scheme for a2(·) and b(·). In Table 1, we show the errors and order of accuracy with
c1 = − 1.5, c2 = − 1.0, c3 = 1.0, x0 = 1.0 and T = 0.1. We could observe that the scheme
has second-order accuracy.

6.3.2 Nonlinear Case

Next we test the IMEX scheme (6.10) on the following nonlinear SDEs:
⎧⎪⎨
⎪⎩

d Xt =
(

−1

2
c24 Xt + c5

√
1 − X2

t

)
dt + c4

√
1 − X2

t dWt , (ω, t) ∈ � × (0, T ],

X0 = 0, ω ∈ �,

(6.12)

where c4, c5 are fixed real numbers. The exact solution of (6.12) is

Xt (ω) = sin (c4 Wt (ω) + c5 t) .

In this case, we have

a1(x) = − 1

2
c24 x, a2(x) = c5

√
1 − x2, b(x) = c4

√
1 − x2.

We apply IMEX scheme (6.10) to Eq. (6.12), in which we use implicit scheme for linear
term a1(·) and explicit scheme for nonlinear terms a2(·) and b(·). In Table 2, we show the
errors and order of accuracy with c4 = 1.0, c5 = − 1.0 and T = 0.1. We could see that the
scheme has second-order accuracy.
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7 Numerical Experiments

In this section we consider the application of the numerical method, which we have defined
in Sect. 3, on some model problems. Here, M is the number of realizations. The positive
real number T is the terminal time. In Theorem 5.1, the error estimate is given by using the
L2(�×[0, 2π]× [0, T ])-norm. Since the mathematical expectation could not be calculated
exactly, the L2(�×[0, 2π ]×[0, T ])-errors are approximated by theMonte Carlo technique

E

[
‖uh(·, ·, T ) − u(·, ·, T )‖2L2(0,2π)

]
≈ e22 ± V ,

with

e2 :=
(

1

M

M∑
i=1

zi

) 1
2

, V := 2√
M

⎡
⎣ 1

M

M∑
i=1

z2i −
(

1

M

M∑
i=1

zi

)2⎤
⎦

1
2

,

where zi := ‖uh(ωi , ·, T ) − u(ωi , ·, T )‖2
L2(0,2π)

, uh(ωi , ·, T ) is one simulation from M
paths, and u(ωi , ·, T ) is the exact solution with the corresponding path ωi . We use e2 to
approximate the L2 error. The quantity V is called the statistical error. The run-time TR (in
seconds) showed in all tables is the CPU running time for computation of M realizations
(with 16 cores for parallel computing). The degree of the piecewise-polynomial space Vh

is k. Since we use the implicit time-marching in this paper, the stringent stability condition
�t ∼ (�x)3 can be removed, which is necessary for third-order PDEs if one uses explicit
time discretization. In all experiments of ultra-weak DG scheme, we adjust the time step to

�t ∼ (�x)
k+1
2 so that the time discretization is effectively (k + 1)-th order of accuracy.

7.1 Linear Stochastic Third-Order Equation

We consider the following linear third-order equation{
du = −uxxx dt + bu dWt in � × [0, 2π] × (0, T ),

u(ω, x, 0) = sin(x), ω ∈ �, x ∈ [0, 2π]. (7.1)

The exact solution of (7.1) is

u(ω, x, t) = sin(x + t)ebWt (ω)− 1
2 b2t .

In Table 3, we show L2-errors for the linear Eq. (7.1). Our computation is based on the
flux choice (3.2) and (3.3). We observe that our scheme is not consistent for P1 polynomials,
while optimal (k + 1)-th order of accuracy is achieved for k ≥ 2. The results on the run-time
show clearly that the ultra-weak DG scheme with k = 3 is more efficient than the one with
k = 2 to reach the same error levels. All the numerical results coincide with the conclusion
of Theorem 5.1.

7.2 Linear Stochastic KdV Equations

In the following we test the accuracy of the ultra-weak DG method on the linear stochastic
KdV equations as follows,{

du = − (uxxx − ux ) dt + b u dWt in � × [0, 2π] × (0, T ),

u(ω, x, 0) = sin(x), ω ∈ �, x ∈ [0, 2π]. (7.2)
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Table 3 Accuracy on (7.1) with
b = 1.0, T = 0.01, M = 1000

N e2 Order V TR

k = 1

10 9.37E−02 – 1.11E−04 0.56

20 1.67E−01 −0.84 3.64E−04 0.59

40 9.41E−02 0.83 1.13E−04 0.79

80 3.12E−02 1.59 1.22E−05 1.97

160 2.76E−02 0.18 9.49E−06 16.75

k = 2

10 1.45E−02 – 2.70E−06 0.67

20 2.65E−03 2.45 8.77E−08 0.92

40 3.27E−04 3.02 1.43E−09 1.48

80 4.08E−05 3.00 2.05E−11 11.39

160 5.11E−06 3.00 3.35E−13 343.55

k = 3

10 5.59E−04 – 3.90E−09 0.67

20 3.62E−05 3.95 1.66E−11 1.13

40 2.27E−06 3.99 6.61E−14 3.24

80 1.42E−07 4.00 2.58E−16 69.13

160 8.90E−09 4.00 1.02E−18 2799.75

The exact solution of (7.2) is

u(ω, x, t) = sin (x + 2t) ebWt (ω)− 1
2 b2t .

We still use (3.2) and (3.3) as our flux choice and take the upwind flux for the first order
convection term f (u) = − u, i.e. f̂ (u−, u+) = − u+. The errors and numerical order of
accuracy for Pk elements with 1 ≤ k ≤ 3 are listed in Table 4, which show that our scheme
gives the optimal (k + 1)-th order of accuracy when k ≥ 2. For P1, the scheme is not
consistent. The scheme with k = 3 is more efficient than the one with k = 2.

7.3 Stochastic Nonlinear KdV Equations

Although we could not give error estimates for fully nonlinear equations, it is worth trying
to apply the ultra-weak DG method to solve some nonlinear stochastic equations. The next
example is the stochastic nonlinear KdV equations,

⎧⎨
⎩

du = −
[

uxxx + 3
∂

∂x

(
u2)] dt + b dWt in � × [0, 2π] × (0, T ),

u(ω, x, 0) = sin(x), ω ∈ �, x ∈ [0, 2π].
(7.3)

The exact solution of (7.3) is

u(ω, x, t) = v

(
x − 6 b

∫ t

0
Ws ds, t

)
+ bWt , (7.4)
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Table 4 Accuracy on (7.2) with
b = 1.0, T = 0.01, M = 1000

N e2 Order V TR

k = 1

10 8.74E−02 – 9.66E−05 0.70

20 1.52E−01 −0.80 3.02E−04 0.73

40 8.80E−02 0.79 9.87E−05 0.82

80 3.71E−02 1.25 1.72E−05 2.38

160 2.70E−02 0.46 9.08E−06 22.30

k = 2

10 1.43E−02 – 2.63E−06 0.71

20 2.63E−03 2.44 8.67E−08 1.03

40 3.26E−04 3.01 1.43E−09 1.83

80 4.08E−05 3.00 2.05E−11 15.98

160 5.11E−06 3.00 3.35E−13 444.89

k = 3

10 5.68E−04 – 4.15E−09 0.71

20 3.63E−05 3.97 1.69E−11 1.32

40 2.27E−06 4.00 6.37E−14 4.55

80 1.43E−07 3.99 2.60E−16 107.46

160 8.88E−09 4.01 1.00E−18 3689.89

where v is the solution of the following deterministic nonlinear KdV equations
{

vt + vxxx + 3
∂

∂x

(
v2
) = 0 in � × [0, 2π] × (0, T ),

v(ω, x, 0) = sin(x), ω ∈ �, x ∈ [0, 2π].
(7.5)

Weuse (3.2) and (3.3) as ourflux. For thefirst order nonlinear convection term f (u) = 3u2,
we use the simple Lax-Friedrichs flux

f̂
(
u−, u+) = 3

2

{(
u−)2 + (

u+)2} − 3α
(
u+ − u−) ,

where

α = max
j

{∣∣∣∣u−
j+ 1

2

∣∣∣∣ ,
∣∣∣∣u+

j+ 1
2

∣∣∣∣
}

.

In Table 5, we show the L2-errors and order of accuracy for Eq. (7.3). We could see that
the order of accuracy converges to k + 1 when k ≥ 2. The scheme lose the order of accuracy
when k = 1. The scheme with k = 3 is more efficient than the one with k = 2.

Remark 7.1 For the SPDEs driven by an additive noise, unlike the diffusion effect of the
stochastic terms on the solutions to (7.1) and (7.2), here the stochastic term only has the shift
effect on the solution of (7.3) since the stochastic perturbation in (7.4) is additive. Thus the
value of b has little influence on the error and M = 100 is good enough to approximate
the mathematical expectation. On the other hand, the cost for the computation of nonlinear
equations is quite high, so it would cost too much to compute the nonlinear case with M =
1000.
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Table 5 Accuracy on (7.3) with
b = 1.0, T = 0.1, M = 100

N e2 Order V TR

k = 1

10 3.22E−01 – 9.86E−04 0.26

20 3.37E−01 −0.06 7.65E−04 0.34

40 3.62E−01 −0.10 1.23E−03 1.15

80 3.75E−01 −0.05 7.39E−04 2.64

160 3.77E−01 −0.01 5.24E−04 11.33

k = 2

10 9.42E−02 – 3.07E−04 1.41

20 2.68E−02 1.82 1.20E−05 2.98

40 4.61E−03 2.54 1.13E−07 14.42

80 6.18E−04 2.90 5.44E−10 81.67

160 7.84E−05 2.98 2.38E−12 611.12

k = 3

10 8.75E−03 – 2.75E−06 2.50

20 5.37E−04 4.03 4.70E−10 12.52

40 3.31E−05 4.02 5.65E−13 89.32

80 2.05E−06 4.01 5.40E−16 747.71

160 1.28E−07 4.00 1.75E−18 7581.41

8 Concluding Remarks

In this article, we present an ultra-weakDGscheme for generalized stochasticKdVequations.
The L2(0, 2π)-stability result of the scheme is obtained, and the optimal error estimate of
orderO(hk+1) with respect to spatial L2-norm for semilinear stochastic equations is proved.
We combine a second order implicit–explicit derivative-free time discretization scheme,
which could reduce the computational costs, to perform several numerical experiments on
some model problems to confirm the analytical results. Even though we concentrate on the
one-dimensional case in this paper, the numerical algorithm and its stability analysis can
be generalized to higher dimensions straightforwardly. But the optimal error estimates for
multi-dimensional case will be more involved, especially on unstructured meshes. In the
future, we would like to investigate error estimates for fully nonlinear stochastic equations
in higher spatial dimensional settings with unstructured meshes.
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