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BMO martingale method for backward stochastic
differential equations driven by general càdlàg local

martingales
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In this paper we study time-discontinuous nonlinear multi-dimen-
sional backward stochastic differential equations (BSDEs) driven
by general càdlàg local martingales. The Lipschitz coefficients of
the generators are allowed to be unbounded. The time-discontin-
uous BMO martingale theory, in particular Fefferman’s inequality,
is used to study the existence and uniqueness of solution in Sp with
p ∈ (1,∞].
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1. Introduction

Backward stochastic differential equations (BSDEs) are widely connected
to various fields, such as stochastic control and optimization, mathematical
finance, theoretical economics, partial differential equations, differential ge-
ometry. See among others [8, 12] and the references therein. In this paper, we
use the time-discontinuous BMO martingale theory to study the following
multi-dimensional nonlinear BSDEs with jumps:

Yt = ξ + JT − Jt +

∫ T

t+
f(s, Ys−)d[N1, N2]s +

∫ T

t+
g(s, Ys−, Zs)d[N3,M ]s

−
∫ T

t+
Zs dMs −

∫ T

t+
dM⊥

s , t ∈ [0, T ),(1)

where J is a càdlàg process, N1, N2, N3, and M are general càdlàg local
martingales, and M⊥ is strongly orthogonal to M .
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BSDEs are introduced by Bismut [2, 3, 4], in particular in its linear
form as an adjoint equation in the Pontryagin stochastic maximum princi-
ple and in a nonlinear form as the backward stochastic Riccati equation (an
equivalent matrix form of the stochastic Bellman equation) for the stochas-
tic linear quadratic optimal control problem. Pardoux and Peng [18] proved
the seminal existence and uniqueness theorem for nonlinear Lipschitz con-
tinuous BSDEs. Since then, BSDEs have been studied in different spaces of
solutions under different assumptions on the generators (see e.g. [5, 9] and
the references therein).

There are numerous efforts at the solution of BSDEs driven by discon-
tinuous local martingales. Tang and Li [21] obtain the existence of a unique
S2 solution to a BSDE driven by a Poisson random measure independent of
the Brownian motion. For p ∈ (1, 2), Yao [22] shows that the above BSDE
admits a unique Sp solution by approximating the monotonic generator by
a sequence of Lipschitz generators via convolution. By introducing stronger
integrability condition on the terminal value, Buckdahn [6] and El Karoui
and Huang [11] consider a general BSDE driven by a general càdlàg martin-
gale and continuous increasing process in the generalized sense. Carbone et
al. [7] consider the above BSDE in the space S2, where the solution has the
same power p = 2 of integrability as the terminal value, but require that the
generators are uniformly Lipschitz continuous. Recently, Papapantoleon et
al. [17] propose a wellposedness result for BSDE with possibly unbounded
random time horizon and driven by a general martingale in a filtration that
may be stochastically discontinuous. See also [1, 13, 10, 16, 20] and the ref-
erences therein for BSDEs with jumps. However, solution of BSDEs driven
by general càdlàg local martingales, with the same power p of integrability
as the underlying data (ξ, J) for p ∈ (1,∞], still remains to be studied.

In 2010, Delbaen and Tang [9] use the theory of BMO martingales to
prove the unique solvability of BSDEs (1) for continuous local martingale
M , where the adapted solutions have the same power p of integrability to the
underlying data for p ∈ (1,∞]. In this paper, we extend the preceding work
to allow M to be discontinuous. We have to develop some inequalities with
the discontinuous BMO martingale theory, which are essential to deal with
the unbounded Lipschitz coefficients and càdlàg driving terms. In contrast
to the case of continuous M , BSDEs (1) driven by càdlàg local martingales
have at least the following three novelties arising from the appearance of the
jump: Firstly, since the quadratic variation of a discontinuous process with
bounded total variation is no longer vanishing, the resulting new terms have
to be well dominated; Secondly, many useful tools in Kazamaki [15] have to
be adapted to our more general BMO martingaleM (see the next section for



BMO martingale method for BSDEs with jumps 563

details); Thirdly, in the discontinuous case, the covariation process between

two orthogonal processes M and M⊥ is only a local martingale, and is not

necessarily equal to zero any more (while [M,M⊥] = 〈M,M⊥〉 = 0 holds

in the continuous case), which leads us to consider BSDEs of the adjusted

form (9) for p �= 2 and to introduce the condition of extreme point of Γ(M)

to guarantee the strong property of predictable representation.

The rest of the paper is organized as follows. Section 2 consists of three

subsections. In the first two subsections, we provide some basic notations,

definitions and well-known inequalities. Fefferman’s inequality is crucial in

this paper. It will be used to prove some inequalities and properties in Sub-

section 2.3, which are essential to the proof of our main results. Section 3

consists of three subsections. In Subsection 3.1, we propose the unique ex-

istence result in S2 × (H2)2 under some suitable sliceability assumption. In

Subsection 3.2, we obtain a new existence result in S∞ × (BMO)2 when

the data (J, ξ) ∈ S∞ × L∞. In Subsection 3.3, we study the general case of

p ∈ (1,∞). In Section 4, we get an improved result for the linear BSDE,

in which the unique existence of the BMO solution can be obtained via a

weak condition for the terminal value, i.e. ξ ∈ BMO.

2. Preliminaries

2.1. Notations and definitions

In this subsection we introduce notations and definitions. Let (Ω,F ,P) be a

complete probability space with a filtration {Ft, t ≥ 0} satisfying the usual

conditions: (i) F0 contains all the P-null sets of F ; (ii) Ft = ∩s>tFs for

all t ≥ 0. Throughout this paper we assume that all the processes equal to

zero at t = 0−. Let Mloc,0(P) be the space of all local martingales {Mt, t ≥
0} under the probability measure P, with càdlàg paths and M0 = 0. For

simplicity of notations, we write Mloc,0 for Mloc,0(P) if there is no danger of

confusion. The norm of a d1×d2 matrix y is given by |y| :=
√

trace(yyT). By

saying that a vector-valued or matrix-valued function belongs to a function

space, we mean all the components belong to that space. Let the terminal

time T be a positive number.

The quadratic covariation of M,N ∈ Mloc,0 is defined by

[M,N ]t := MtNt −
∫ t

0
Ms−dNs −

∫ t

0
Ns−dMs, t ≥ 0.
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The notation [M,M ] is simplified as [M ], which is called the quadratic
variation of M. Let ΔM denote the process

ΔMt = Mt −Mt−, t ≥ 0.

Then, we have

Δ[M,N ] = ΔMΔN.

Let p ∈ [1,∞]. For p ∈ [1,∞), denote by Lp the space of all FT -
measurable random variables ξ such that

‖ξ‖Lp := (E [|ξ|p])
1

p < ∞,

and L∞ be the space of all essentially bounded and FT -measurable random
variables, equipped with the canonical norm ‖ · ‖L∞ . The space Sp is the
space of all càdlàg adapted processes M such that

‖M‖Sp := ‖M∗
T ‖Lp < ∞ with M∗

t := sup
0≤s≤t

|Ms| for t ≥ 0.

The space Hp is the space of all processes M ∈ Mloc,0 such that

‖M‖Hp :=
∥∥∥[M ]

1

2

T

∥∥∥
Lp

< ∞.

For the predictable stochastic process H and X, the notation H ◦ X
stands for the stochastic integral

∫ ·
0 HsdXs. For any stopping time τ and σ

with τ < σ ≤ T , we define

τXσ := (X −Xτ )σ−

with

Xτ−
t := Xt · χ[0,τ)(t) +Xτ− · χ[τ,T ](t),

and

Xτ
t := Xt · χ[0,τ)(t) +Xτ · χ[τ,T ](t).

Definition 2.1. The space BMO is defined as the set{
M ∈ Mloc,0

∣∣∣ ‖M‖BMO := sup
τ

∥∥∥∥{E [|MT −Mτ−|2
∣∣Fτ

]} 1

2

∥∥∥∥
L∞

<∞
}
.

We say that a random variable ξ lies in BMO if E[ξ|F·]− E[ξ] ∈ BMO.
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The following definition of sliceability is based on [19, page 254].

Definition 2.2. Let M = (M1, . . . ,Mn) ∈ (BMO)n and �ε = (ε1, . . . , εn)
with εl > 0, l = 1, . . . , n. If there is a finite sequence of stopping times
satisfying

0 = T0 < T1 < . . . < Tk < Tk+1 = T

such that ∥∥∥TiM
Ti+1

l

∥∥∥
BMO

≤ εl, i = 0, . . . , k, l = 1, . . . , n,

we say that M is �ε-sliceable in (BMO)n.

Definition 2.3. Let M ∈ Mloc,0 and L(M) be the totality of all predictable
processes which are integrable with respect to M . Write

L(M) = {H ◦M : H ∈ L(M)}.

If L(M) = Mloc,0, we say that M has the strong property of predictable
representation.

Definition 2.4. Define

Γ(M) :=
{
P
′ : P

′ is a probability measure on F and M ∈ Mloc,0(P
′)
}
,

Denote by Γe(M) the set of extreme points of Γ(M), i.e.,

Γe(M) :=
{
P
′ ∈ Γ(M): if P′=aP1+(1−a)P2, P1,P2 ∈ Γ(M), a ∈ (0, 1)

then P
′ = P

1 = P
2
}
.

2.2. Some inequalities and lemmas

In this subsection, we recall some well-known inequalities and lemmas, which
can be found in e.g. He et al. [14], Kazamaki [15] and Protter [19].

Lemma 2.1 (Doob’s inequality). Let M be a positive submartingale. For
p ∈ (1,∞) with q conjugate to p, we have

‖M‖Sp ≤ q‖MT ‖Lp .

Lemma 2.2 (BDG inequality). For p ∈ [1,∞), there exist two constants
Cp > cp > 0 such that

C−1
p ‖M‖Hp ≤ ‖M‖Sp ≤ c−1

p ‖M‖Hp , ∀M ∈ Hp.
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Lemma 2.3 (Kunita-Watanabe inequality). Let H,K be measurable pro-
cesses and X,Y ∈ Mloc,0. Then, one has almost surely

∫ T

0
|Hs||Ks||d[X,Y ]s| ≤

(∫ T

0
H2

s d[X]s

) 1

2
(∫ T

0
K2

sd[Y ]s

) 1

2

.

Lemma 2.4 (Fefferman’s inequality). Let M,N ∈ Mloc,0, U be an optional
process and τ be a stopping time. We have

E

[∫ T

τ
|Us||d[M,N ]s|

∣∣∣∣ Fτ

]
≤

√
2E

[(∫ T

τ
U2
s d[M ]s

) 1

2
∣∣∣∣ Fτ

]
‖N‖BMO.

The dual space of continuous linear functional on Hp is Hq, where 1/p+
1/q = 1, 1 < p < ∞. For the dual space of H1, we have the following lemma.

Lemma 2.5. For a fixed N ∈ BMO, define ϕN (M) = E [[N,M ]T ] for
M ∈ H1. Then N �→ ϕN is a one to one linear mapping from BMO onto(
H1
)∗

and 1√
2
‖ϕN‖ ≤ ‖N‖BMO ≤

√
5‖ϕN‖.

Lemma 2.6. Let M,N ∈ H2. Define

Int(M) := {H ◦M ∈ L(M) : ‖H ◦M‖H2 < ∞} .

Let L = Z ◦M be the projection of N onto Int(M). We have that M⊥ :=
N −L is orthogonal to Int(M), i.e., for any H ◦M ∈ Int(M), [M⊥, H ◦M ]
is a martingale.

Lemma 2.7. The following two assertions are equivalent.

(i) M has the strong property of predicable representation;
(ii) P ∈ Γe(M).

2.3. Some important lemmas

We have the following Lemmas 2.8 and 2.9 as the discontinuous counterparts
of the results in Delbaen and Tang [9]. They play an essential role in the

proof of our main results.

Lemma 2.8. Let p ∈ [1,∞). If X ∈ Sp and M ∈ BMO, we have

‖X− ◦M‖Hp ≤
√
2‖X‖Sp‖M‖BMO.
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Proof. (i) The case p ∈ (1,∞). From Fefferman’s and Hölder’s inequalities,
we have for any N ∈ Hq,

|E{[X− ◦M,N ]T }| ≤ E{|[X− ◦N,M ]T |}
≤

√
2‖X− ◦N‖H1‖M‖BMO

≤
√
2‖X‖Sp‖N‖Hq‖M‖BMO.

Therefore,

‖X− ◦M‖Hp = sup
N∈Hq

|E{[X− ◦M,N ]T }|
‖N‖Hq

≤
√
2‖X‖Sp‖M‖BMO.

(ii) The case p = 1. We have∫ T

0
X2

s−d[M ]s ≤ X∗
T

∫ T

0
X∗

s−d[M ]s

= X∗
T

(
X∗

T [M ]T −
∫ T

0
[M ]s−dX

∗
s − [[M ], X∗]T

)
.

Since [M ] and X∗ are nondecreasing processes, we have

[[M ], X∗]T =
∑

0<s≤T

Δ[M ]sΔX∗
s ≥ 0.

It holds that∫ T

0
X2

s−d[M ]s ≤ X∗
T

(
X∗

T [M ]T −
∫ T

0
[M ]s−dX

∗
s

)
= X∗

T

(∫ T

0
([M ]T − [M ]s−) dX

∗
s +X∗

0 [M ]T

)
.

Therefore,

E

[(∫ T

0
X2

s−d[M ]s

) 1

2

]

≤ E

[
(X∗

T )
1

2

(∫ T

0
([M ]T − [M ]s−) dX

∗
s +X∗

0 [M ]T

) 1

2

]

≤ ‖X‖
1

2

S1

{
E

[∫ T

0
E [[M ]T − [M ]s−|Fs] dX

∗
s

]
+X∗

0E[[M ]T ]

} 1

2
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≤ ‖X‖
1

2

S1

{
E

[∫ T

0
‖M‖2BMO dX∗

s

]
+X∗

0‖M‖2BMO

} 1

2

≤ ‖X‖
1

2

S1‖M‖BMO (E [X∗
T ])

1

2 ≤
√
2‖X‖S1‖M‖BMO.

This completes the proof.

Lemma 2.9. Let p ∈ [1,∞). If X ∈ Hp and M ∈ BMO, we have∥∥∥∥∫ T

0
|d[M,X]s|

∥∥∥∥
Lp

≤
√
2p‖X‖Hp‖M‖BMO.

Proof. For the case p = 1, it is immediate from Fefferman’s inequality to get
the desired results. In what follows, we consider the case p ∈ (1,∞). Take
ξ ∈ Lq with 1/p+ 1/q = 1. Write Yt := E[|ξ||Ft] for t ∈ [0, T ]. According to
Fefferman’s inequality, it follows∣∣∣∣E [(∫ T

0
|d[M,X]s|

)
ξ

]∣∣∣∣ ≤ E

[∫ T

0
Ys|d[X,M ]s|

]
≤

√
2E

[(∫ T

0
Y 2
s d[X]s

) 1

2

]
‖M‖BMO.

In view of Hölder’s inequality and Doob’s inequality, we have∣∣∣∣E [(∫ T

0
|d[M,X]s|

)
ξ

]∣∣∣∣ ≤
√
2‖X‖Hp‖M‖BMO‖Y ‖Sq

≤
√
2p‖X‖Hp‖ξ‖Lq‖M‖BMO.

The proof is complete.

3. Nonlinear BSDEs with jumps

Throughout this section, N1, N2, N3 and M are supposed to lie in Mloc,0,
the terminal value ξ is an R

n-valued FT -measurable random variable, J is
an R

n-valued {Ft, 0 ≤ t ≤ T}-adapted càdlàg process, and the R
n-valued

random functions f and g are defined on Ω × [0, T ] × R
n and Ω × [0, T ] ×

R
n×R

n, respectively. For each y, z ∈ R
n, f(·, ·, y) and g(·, ·, y, z) are adapted.

Moreover, we assume that there are three adapted processes α, β, γ such
that for each (ω, t) ∈ Ω× [0, T ], it holds

f(t, 0) = 0, |f(t, y1)− f(t, y2)| ≤ α(t)|y1 − y2|
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for any (y1, y2) ∈ (Rn)2, and

g(t, 0, 0) = 0, |g(t, y1, z1)− g(t, y2, z2)| ≤ β(t)|y1 − y2|+ γ(t)|z1 − z2|

for any (y1, y2, z1, z2) ∈ (Rn)4.

3.1. The S2 × (H2)2 solution

Let us first study the case of p = 2. The triple of processes (Y, Z ◦M,M⊥)
are called a solution of BSDE (1) if (i) they satisfy the equation (1) and are
{Ft, 0 ≤ t ≤ T}-adapted, (ii) Z is a predictable process, and (iii) M and
M⊥ are strongly orthogonal (i.e., [M,M⊥] is a martingale). We have the
following existence and uniqueness result for S2 × (H2)2 solution.

Theorem 3.1. Let M ∈ H2. Assume that (N2, β
1

2 ◦ M,γ ◦ N3) is �ε =

(ε1, ε2, ε3)-sliceable in (BMO)3 and (α ◦ N1, β
1

2 ◦ N3) belongs to (BMO)2

such that

ρ2 := C2max
{
2
√
2 ε3, 4

(
‖α ◦N1‖BMO ε1 + ε2

∥∥∥β 1

2 ◦N3

∥∥∥
BMO

)}
< 1,

where C2 := 6C2 + 2, and C2 is the constant in BDG inequality for p = 2.
Then for any (ξ, J) ∈ L2 × S2, BSDE (1) has a unique solution (Y, Z ◦

M,M⊥) ∈ S2 × (H2)2 such that

‖Y ‖S2 + ‖Z ◦M‖H2 + ‖M⊥‖H2 ≤ K2 (‖ξ‖L2 + ‖J‖S2) ,

where K2 is a positive constant independent of (ξ, J).

Proof. For any y ∈ S2 and z ◦M ∈ H2, we consider the following BSDE:

Yt = ξ + JT − Jt +

∫ T

t+
f(s, ys−)d[N1, N2]s

+

∫ T

t+
g(s, ys−, zs)d[N3,M ]s −

∫ T

t+
ZsdMs −

∫ T

t+
dM⊥

s .(2)

Define

Ft := E

[
ξ + JT +

∫ T

0
f(s, ys−)d[N1, N2]s

+

∫ T

0
g(s, ys−, zs)d[N3,M ]s

∣∣∣∣ Ft

]
.(3)
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By Doob’s inequality, we have

‖F‖S2 ≤ 2 ‖ξ + JT ‖L2 + 2

∥∥∥∥∫ T

0
f(s, ys−)d[N1, N2]s

∥∥∥∥
L2

+2

∥∥∥∥∫ T

0
g(s, ys−, zs)d[N3,M ]s

∥∥∥∥
L2

.

According to Lemmas 2.8 and 2.9, we have∥∥∥∥∫ T

0
f(s, ys−) d[N1, N2]s

∥∥∥∥
L2

≤
∥∥∥∥∫ T

0
α(s)|ys−| |d[N1, N2]s|

∥∥∥∥
L2

=

∥∥∥∥∫ T

0
|d[α ◦N1, |y−| ◦N2]s|

∥∥∥∥
L2

≤ 2
√
2 ‖y∗− ◦N2‖H2‖α ◦N1‖BMO

≤ 4‖y‖S2‖N2‖BMO‖α ◦N1‖BMO

and∥∥∥∥∫ T

0
g(s, ys−, zs) d[N3,M ]s

∥∥∥∥
L2

≤
∥∥∥∥∫ T

0
|d[β 1

2 ◦N3, |y−| ◦ β
1

2 ◦M ]s|
∥∥∥∥
L2

+

∥∥∥∥∫ T

0
|d[γ ◦N3, |z| ◦M ]s|

∥∥∥∥
L2

≤ 4‖y‖S2‖β 1

2 ◦M‖BMO‖β
1

2 ◦N3‖BMO

+2
√
2‖z ◦M‖H2‖γ ◦N3‖BMO.

Therefore, F ∈ S2. Then Lemma 2.6 implies that there exist a predictable

process Z and a martingale M⊥ orthogonal to Int(M), such that

Ft = F0 +

∫ t

0
Zs dMs +M⊥

t .

It holds that

Ft +

∫ T

t+
Zs dMs +

∫ T

t+
dM⊥

s = FT

= ξ + JT +

∫ T

0
f(s, ys−) d[N1, N2]s +

∫ T

0
g(s, ys−, zs) d[N3,M ]s.
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We define

Yt := Ft − Jt −
∫ t

0
f(s, ys−) d[N1, N2]s −

∫ t

0
g(s, ys−, zs) d[N3,M ]s.

Then the triple (Y, Z ◦M,M⊥) is a solution of BSDE (2).

Note that

Yt = E

[
ξ + JT − Jt +

∫ T

t+
f(s, ys−)d[N1, N2]s

+

∫ T

t+
g(s, ys−, zs)d[N3,M ]s

∣∣∣∣ Ft

]
.

In view of Doob’s inequality, we have

‖Y ‖S2 ≤ 2 ‖ξ + JT ‖L2 + ‖J‖S2

+2

∥∥∥∥∫ T

0
|f(s, ys−)| d[N1, N2]s

∥∥∥∥
L2

+2

∥∥∥∥∫ T

0
|g(s, ys−, zs)| d[N3,M ]s

∥∥∥∥
L2

≤ ‖J‖S2 + 2‖ξ + JT ‖L2

+8‖y‖S2‖N2‖BMO‖α ◦N1‖BMO

+8‖y‖S2‖β 1

2 ◦M‖BMO‖β
1

2 ◦N3‖BMO

+4
√
2‖z ◦M‖H2‖γ ◦N3‖BMO.

Note that∫ T

t+
Zs dMs +

∫ T

t+
dM⊥

s = −Yt + ξ + JT − Jt

+

∫ T

t+
f(s, ys−) d[N1, N2]s

+

∫ T

t+
g(s, ys−, zs) d[N3,M ]s.

Since M⊥ is orthogonal to Int(M), then [Z ◦M,M⊥] is a martingale. We
have

‖Z ◦M‖2H2 = E {[Z ◦M ]T }
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≤ E

{
[Z ◦M ]T + [M⊥]T

}
= E

{
[Z ◦M ]T + [M⊥]T + 2[Z ◦M,M⊥]T

}
= E

{
[Z ◦M +M⊥]T

}
= ‖Z ◦M +M⊥‖2H2 .(4)

Using BDG inequality, we have

‖Z ◦M‖H2 ≤ C2

∥∥∥Z ◦M +M⊥
∥∥∥
S2

≤ 2C2

∥∥∥∥∫ T

t+
Zs dMs +

∫ T

t+
dM⊥

s

∥∥∥∥
S2

≤ 2C2

(
‖Y ‖S2 + ‖ξ + JT ‖L2 + ‖J‖S2

+4‖y‖S2‖N2‖BMO‖α ◦N1‖BMO

+4‖y‖S2‖β 1

2 ◦M‖BMO‖β
1

2 ◦N3‖BMO

+2
√
2‖z ◦M‖H2‖γ ◦N3‖BMO

)
.

Combining the above, we have

‖Y ‖S2 + ‖Z ◦M‖H2 ≤ C2‖ξ + JT ‖L2 + (1 + 4C2) ‖J‖S2

+4C2 ‖α ◦N1‖BMO ‖N2‖BMO ‖y‖S2

+4C2‖β
1

2 ◦M‖BMO‖β
1

2 ◦N3‖BMO‖y‖S2

+2
√
2C2 ‖γ ◦N3‖BMO ‖ z ◦M ‖H2 .(5)

Thus the solution (Y, Z ◦ M,M⊥) of BSDE (2) lies in S2 × (H2)2. The
uniqueness can be easily proved if one estimates ‖Y 1−Y 2‖S2 +‖(Z1−Z2)◦
M‖H2 by the similar method of (5).

Since the martingale (N2, β
1

2 ◦M,γ◦N3, β
1

2 ◦N3) is �ε-sliceable in (BMO)4,
there is a finite sequence of stopping times {Ti, i = 0, . . . , Ĩ + 1} satisfying

0 = T0 < T1 < T2 < · · · < T
˜I < T

˜I+1 = T

such that

‖N2i‖BMO ≤ ε1, ‖β 1

2 ◦Mi‖BMO ≤ ε2,

‖γ ◦N3i‖BMO ≤ ε3, ‖β 1

2 ◦N3i‖BMO ≤ ε4,



BMO martingale method for BSDEs with jumps 573

where

N1i :=
TiN

Ti+1

1 , N2i :=
TiN

Ti+1

2 , N3i :=
TiN

Ti+1

3 , Mi :=
TiMTi+1 ,

are defined on [Ti, Ti+1] for i = 0, 1, · · · , Ĩ.
Set for i = 0, . . . , Ĩ,

S2
i := S2[Ti, Ti+1] and H2

i := H2[Ti, Ti+1]

where the space S2[Ti, Ti+1] (resp. H2[Ti, Ti+1]) consists of all processes of

S2 (resp. H2) restricted on [Ti, Ti+1]. Consider the transformation Ii in the

Banach space S2
i ×H2

i : define for (y, z ◦M) ∈ S2
i ×H2

i ,

Ii(y, z ◦M) := (Y i, Zi ◦M)

as the first two components of the unique adapted solution (Y, Z ◦M,M⊥)
to the following BSDE:

Yt = Y i+1
Ti+1

+ (JTi+1
− Jt) +

∫ Ti+1

t+
f(s, ys−) d[N1i, N2i]s

+

∫ Ti+1

t+
g(s, ys−, zs) d[N3i,Mi]s

−
∫ Ti+1

t+
Zs dMis −

∫ Ti+1

t+
dM⊥

s , t ∈ [Ti, Ti+1]

where Y
˜I+1
T := ξ. Let (yk, zk ◦ M) ∈ S2

i × H2
i with k = 1, 2. Denote by

(Y i,k, Zi,k ◦M) the image Ii(y
k, zk ◦M) for k = 1, 2. Proceeding similarly

as before, we have ∥∥Y i,1 − Y i,2
∥∥
S2

i

+
∥∥(Zi,1 − Zi,2) ◦M

∥∥
H2

i

≤ C2max

{
2
√
2 ‖γ ◦N3i‖BMO , C3

}
×
[∥∥y1 − y2

∥∥
S2

i

+
∥∥(z1 − z2) ◦M

∥∥
H2

i

]
for the constant

C3 := 4

(
‖α◦N1i‖BMO ‖N2i‖BMO +

∥∥∥β 1

2 ◦Mi

∥∥∥
BMO

∥∥∥β 1

2 ◦N3i

∥∥∥
BMO

)
.



574 Yunzhang Li and Shanjian Tang

Since

‖α ◦N1i‖BMO ≤ ‖α ◦N1‖BMO and
∥∥∥β 1

2 ◦N3i

∥∥∥
BMO

≤
∥∥∥β 1

2 ◦N3

∥∥∥
BMO

,

we have

C2max

{
2
√
2 ‖γ ◦N3i‖BMO , C3

}
≤ ρ2 < 1.

Then for any (yk, zk) ∈ S2
i ×H2

i with k = 1, 2, we have∥∥Ii(y1, z1)− Ii(y
2, z2)

∥∥
S2

i ×H2
i

≤ ρ2

[∥∥y1 − y2
∥∥
S2

i

+
∥∥(z1 − z2) ◦M

∥∥
H2

i

]
.

Thus Ii is a contraction on S2
i ×H2

i for i = 0, . . . , Ĩ. Iteratively in a backward
way, the BSDE

Yt = Y i+1
Ti+1

+ (JTi+1
− Jt) +

∫ Ti+1

t+
f(s, Ys−) d[N1i, N2i]s

+

∫ Ti+1

t+
g(s, Ys−, Zs) d[N3i,Mi]s

−
∫ Ti+1

t+
Zs dMis −

∫ Ti+1

t+
dM⊥

s , t ∈ [Ti, Ti+1]

has a unique solution (Y i, Zi ◦Mi,M
i,⊥) ∈ S2

i ×H2
i ×H2

i for i = 0, 1, · · · , Ĩ.
Then, the triple (Y, Z ◦M,M⊥) defined by

(Yt, Zt,M
⊥
t ) :=

˜I∑
i=0

(Y i
t , Z

i
t ,M

i,⊥
t )χ[Ti,Ti+1)(t), t ∈ [0, T ]

is the unique adapted solution to BSDE (1). Moreover, we have

(1− ρ2) (‖Y ‖S2 + ‖Z ◦M‖H2)

≤ C2 ‖ξ + JT ‖L2 + (4C2 + 1) ‖J‖S2 .

The proof is complete.

3.2. The S∞ × (BMO)2 solution

In this subsection, the unique solution (Y, Z◦M,M⊥) of BSDE (1) is further
proved to lie in S∞ × (BMO)2 when the data (ξ, J) is essentially bounded
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and N3 = M as follows:

Yt = ξ + JT − Jt +

∫ T

t+
f(s, Ys−)d[N1, N2]s +

∫ T

t+
g(s, Ys−, Zs)d[M ]s

−
∫ T

t+
Zs dMs −

∫ T

t+
dM⊥

s , t ∈ [0, T ].(6)

Theorem 3.2. Let M ∈ H2. Assume that (N2, β
1

2 ◦ M,γ ◦ M) is �ε =
(ε1, ε2, ε3)-sliceable in (BMO)3 and α ◦N1 lies in BMO such that

ρ2 := (6C2 + 2)max
{
2
√
2 ε3, 4

(
‖α ◦N1‖BMO ε1 + ε22

)}
< 1

and

η2 := 4
(
ε1‖α ◦N1‖BMO + ε22

)
+

√
2

c2
ε3 < 1,

where c2 and C2 are the constants in BDG inequality for p = 2.

Then for any (ξ, J) ∈ L∞ × S∞, BSDE (6) admits a unique adapted
solution (Y, Z ◦M,M⊥) ∈ S∞ × (BMO)2.

To prove Theorem 3.2, we consider the dual equation of BSDE (6), which
is the following n× n matrix-valued SDE:

S(t) = I +

∫ t

t0+
S(s−)Asd[N1, N2]s +

∫ t

t0+
S(s−)Bsd[M ]s

+

∫ t

t0+
S(s−)DsdMs,(7)

where I is the n × n identity matrix and t0 ∈ [0, T ] is a fixed number. In
the following Corollary, we prove that the SDE (7) admits a unique solution
S(·) ∈ Sp.

Corollary 3.1. Let p ∈ [1,∞). Assume that

(i) The Rn×n-valued processes A,B and D are bounded by the real valued
nonnegative adapted processes α, β and γ, respectively;

(ii) (N2, β
1

2 ◦M,γ ◦M) is �ε = (ε1, ε2, ε3)-sliceable in (BMO)3 and α ◦N1

is in BMO such that

ηp := 2p
(
ε1‖α ◦N1‖BMO + ε22

)
+

√
2

cp
ε3 < 1.
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Then SDE (7) admits a unique solution S(·) such that

E

[
sup

t∈[t0,T ]
|S(t)|p

∣∣∣∣∣Ft0

] 1

p

≤ Bp,

where Bp is a positive constant independent of t0.

Proof of Corollary 3.1. Firstly, we use the contraction mapping principle to
prove the existence and uniqueness of the solution. Note that the martingale
(N2, β

1

2 ◦M,γ ◦M) is �ε-sliceable in (BMO)3 with the corresponding finite
sequence of stopping times {Ti, i = 0, . . . , Ĩ +1}. We consider the following
map Ii in the Banach space Sp

i , i = 0, . . . , Ĩ. For S ∈ Sp
i ,

Ii(S)t := Si−1(Ti) +

∫ t

Ti+
S(s−)Asd[N1i,N2i]s +

∫ t

Ti+
S(s−)Bsd[Mi]s

+

∫ t

Ti+
S(s−)DsdMis,

where S−1 = I. According to Lemmas 2.8 and 2.9, it follows∥∥∥∥∫ t

Ti+
S(s−)Asd[N1i, N2i]s +

∫ t

Ti+
S(s−)Bsd[Mi]s

∥∥∥∥
Sp

i

≤ 2p
(
‖N2i‖BMO ‖α ◦N1i‖BMO + ‖β 1

2 ◦Mi‖2BMO

)
‖S‖Sp

i
.

According to the BDG inequality, we have∥∥∥∥∫ t

Ti+
S(s−)DsdMis

∥∥∥∥
Sp

i

≤
√
2

cp
‖γ ◦Mi‖BMO‖S‖Sp

i
.

It follows ∥∥Ii(S1)− Ii(S
2)
∥∥
Sp

i

≤ ηp
∥∥S1 − S2

∥∥
Sp

i

.

Thus the map Ii is a contraction map and satisfies the following estimate:

‖Ii(S)‖Sp
i
≤ ‖Si−1(Ti)‖Lp

i
+ ηp‖S‖Sp

i
.

Therefore, we get that the stochastic equation

S(t) = Si−1(Ti) +

∫ t

Ti+
S(s−)Asd[N1i,N2i]s



BMO martingale method for BSDEs with jumps 577

+

∫ t

Ti+
S(s−)Bsd[N3i,Mi]s +

∫ t

Ti+
S(s−)DsdN3is,

has a unique solution Si(·) in Sp
i for i = 0, . . . , Ĩ. Then, the process

S(t) :=

˜I∑
i=0

Si(t)χ[Ti,Ti+1)(t),

lies in Sp and is the unique solution to equation (7). Moreover, we have

E

[
sup

t∈[t0,T ]
|S(t)|p

∣∣∣∣∣Ft0

] 1

p

≤ Bp

with Bp := n(1− ηp)
−1. The proof is complete.

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. In view of assumption (i), Theorem 3.1 tells us that

BSDE (6) has a unique adapted solution (Y, Z ◦M,M⊥) ∈ S2 × (H2)2. The

rest of the proof is divided into the following two steps.

Step 1. We show that Y ∈ S∞. Note that BSDE (6) can be written into

the following form:

Yt = ξ + JT − Jt +

∫ T

t+
AsYs−d[N1, N2]s

+

∫ T

t+
(BsYs− +DsZs) d[M ]s −

∫ T

t+
ZsdMs,(8)

where the matrix-valued processes A, B, and D are defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(As)ij =
f i(s, Ȳ j

s−)− f i(s, Ȳ j+1
s− )

Y j
s−

· χ{Y j
s− 	=0}

(Bs)ij =
gi(s, Ȳ j

s−, 0)− gi(s, Ȳ j+1
s− , 0)

Y j
s−

· χ{Y j
s− 	=0}

(Ds)ij =
gi(s, Ys−, Z̄

j
s)− gi(s, Ys−, Z̄

j+1
s )

Zj
s

· χ{Zj
s 	=0}
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with Ȳ j := (0, . . . , 0, Y j , Y j+1, . . . , Y n)T and Z̄j := (0, . . . , 0, Zj , Zj+1, . . . ,

Zn)T. By the Lipschitz assumption on the coefficients, we know that

|As| ≤ α(s), |Bs| ≤ β(s), |Ds| ≤ γ(s).

Then by the assumption (i) and Corollary 3.1, we know that SDE (7) has

a unique solution S(·) ∈ S2. Fix an arbitrary t0 ∈ [0, T ]. Applying the Itô’s

formula for S(t)(Yt + Jt), we have

Yt0 + Jt0 = E

[
S(T )(ξ + JT )

∣∣∣∣ Ft0

]
−E

[∫ T

t0+
S(s−)AsJs− d[N1, N2]s

∣∣∣∣ Ft0

]
−E

[∫ T

t0+
S(s−)BsJs− d[M ]s

∣∣∣∣ Ft0

]
.

It follows

|Yt0 | ≤ |Jt0 |+ E [|S(T )| |ξ + JT | |Ft0 ]

+‖J‖S∞E

[(
sup

s∈[t0,T ]
|S(s)|

)∫ T

t0+
|αsd[N1, N2]s|

∣∣∣∣ Ft0

]

+‖J‖S∞E

[(
sup

s∈[t0,T ]
|S(s)|

)∫ T

t0+
βsd[M ]s

∣∣∣∣ Ft0

]
.

According to Hölder’s inequality and Kunita-Watanabe inequality, we have

|Yt0 | ≤ ‖J‖S∞ +B2 (‖ξ‖L∞ + ‖J‖S∞)

+B2‖J‖S∞

{
E

[
[α ◦N1]

∣∣T
t0
+ [N2]

∣∣T
t0

∣∣∣∣ Ft0

]} 1

2

+B2‖J‖S∞

{
E

[
[β

1

2 ◦M ]
∣∣T
t0

∣∣∣∣ Ft0

]}1/2

,

where B2 is the constant in Corollary 3.1 for p = 2. Consequently, we have

‖Y ‖S∞ ≤ ‖J‖S∞ +B2 (‖ξ‖L∞ + ‖J‖S∞)

+B2‖J‖S∞

(
‖α◦N1‖BMO + ‖N2‖BMO +

∥∥∥β 1

2 ◦M
∥∥∥
BMO

)
.
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Step 2. We show that Z ◦M ∈ BMO. To simplify the exposition, we set

CY J := ‖Y ‖S∞ + ‖J‖S∞ .

In view of BSDE (8), using Itô’s formula and standard arguments, we have

[Z ◦M +M⊥]
∣∣T
σ− = |ξ + JT |2 − |Yσ− + Jσ−|2

+2

∫ T

σ
(Yt− + Jt−)

TAtYtd[N1, N2]t

+2

∫ T

σ
(Yt− + Jt−)

T(BtYt +DtZt)d[M ]t

−2

∫ T

σ
(Yt− + Jt−)

Td(Z ◦M +M⊥)t,

for any stopping time σ ≤ T . It follows that

E

[
[Z ◦M ]

∣∣T
σ−|Fσ

]
≤ E

[
[Z ◦M +M⊥]

∣∣T
σ−|Fσ

]
≤ C2

Y J + 2CY JE

[∫ T

σ
αs|Ys||d[N1, N2]s|

∣∣∣∣ Fσ

]
+2CY JE

[∫ T

σ
βs|Ys|d[M ]s

∣∣∣∣ Fσ

]
+2CY JE

[∫ T

σ
γs|Zs|d[M ]s

∣∣∣∣ Fσ

]
.

According to Kunita-Watanabe inequality and Young’s inequality, we have

E

[
[Z ◦M ]

∣∣T
σ−|Fσ

]
≤ C2

Y J + 2C2
Y JE

[(
[α ◦N1]

∣∣T
σ

) 1

2
(
[N2]

∣∣T
σ

) 1

2

∣∣∣∣ Fσ

]
+2C2

Y JE

[
[β

1

2 ◦M ]
∣∣T
σ

∣∣∣∣ Fσ

]
+2CY JE

[(
[γ ◦M ]

∣∣T
σ

) 1

2
(
[Z ◦M ]

∣∣T
σ

) 1

2

∣∣∣∣ Fσ

]
≤ C2

Y J

(
1 + ‖α ◦N1‖2BMO + ‖N2‖2BMO

)
+2C2

Y J

(
‖γ ◦M‖2BMO + ‖β 1

2 ◦M‖2BMO

)
+
1

2
E

[
[Z ◦M ]

∣∣T
σ−

∣∣∣∣ Fσ

]
.
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It holds that

‖Z ◦M‖BMO = sup
σ

E

[
[Z ◦M ]

∣∣T
σ−|Fσ

]
≤ 2C2

Y J

(
1 + ‖α ◦N1‖2BMO + ‖N2‖2BMO

)
+4C2

Y J

(
‖β 1

2 ◦M‖2BMO + ‖γ ◦M‖2BMO

)
.

Thus Z ◦M ∈ BMO. This completes the proof.

3.3. The Sp × Hp solution with p ∈ (1,∞)

In Section 3.1, the inequality

‖Z ◦M‖H2 ≤ ‖Z ◦M +M⊥‖H2

is shown to be important in the construction of the contraction map. In the
general case of p ∈ (1,∞), for continuous M , we have that

[Z ◦M,M⊥] = 〈Z ◦M,M⊥〉 = 0,

and the norm ‖Z ◦M‖Hp can be estimated via the inequality

‖Z ◦M‖Hp ≤ ‖Z ◦M +M⊥‖Hp ,

which has been well addressed by Delbean and Tang [9] in 2010. However,
for discontinuous M , both norms ‖Z ◦ M‖Hp and ‖M⊥‖Hp could not be
separately estimated as in (4), and we can only get that [Z ◦ M,M⊥] is a
martingale and

‖Z ◦M +M⊥‖Hp < ∞.

This difference turns out to be a stumbling block to the definition of the
contraction map in our general case. To sidestep the trouble, we assume
that the strong predictable representation property holds and consider the
BSDEs of the following form:

Yt = ξ + JT − Jt +

∫ T

t+
f(s, Ys−)d[N1, N2]s +

∫ T

t+
g(s, Ys−, Zs)d[N3,M ]s

−
∫ T

t+
Zs dMs, t ∈ [0, T ].(9)

By a solution (Y, Z ◦ M) to BSDE (9), we mean that (i) (Y, Z ◦ M)
satisfies the equation (9) and (ii) (Y, Z ◦M) is adapted and Z is predictable.
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Theorem 3.3. Let P ∈ Γe(M) and p ∈ (1,∞) with q being its conjugate

number. Assume that (N2, β
1

2 ◦ M,γ ◦ N3) is �ε = (ε1, ε2, ε3)-sliceable in

(BMO)3 and (α ◦N1, β
1

2 ◦N3) is in (BMO)2 such that

ρp := Cpmax
{√

2 pε3, 2p
(
ε1 ‖α ◦N1‖BMO + ε2

∥∥∥β 1

2 ◦N3

∥∥∥
BMO

)}
< 1,

where Cp := 2(q + 1)Cp + q, and Cp is the constant in BDG inequality.

Then for any (ξ, J) ∈ Lp × Sp, BSDE (9) has a unique solution (Y, Z ◦
M) ∈ Sp ×Hp such that

‖Y ‖Sp + ‖Z ◦M‖Hp ≤ Kp (‖ξ‖Lp + ‖J‖Sp) ,

where Kp is a positive constant independent of (ξ, J).

Proof. The proof is very analogous with Theorem 3.1. Now let us sketch the

proof. For any (y, z ◦M) ∈ Sp ×Hp, consider the following BSDE

Yt = ξ + JT − Jt +

∫ T

t+
f(s, ys−) d[N1, N2]s

+

∫ T

t+
g(s, ys−, zs) d[N3,M ]s −

∫ T

t+
Zs dMs.(10)

We define F as (3). According to Doob’s inequality, we have

‖F‖Sp ≤ q ‖ξ + JT ‖Lp + q

∥∥∥∥∫ T

0
f(s, ys−) d[N1, N2]s

∥∥∥∥
Lp

+q

∥∥∥∥∫ T

0
g(s, ys−, zs) d[N3,M ]s

∥∥∥∥
Lp

.

In view of Lemmas 2.8 and 2.9, we have∥∥∥∥∫ T

0
f(s, ys−) d[N1, N2]s

∥∥∥∥
Lp

≤ 2p‖y‖Sp‖N2‖BMO‖α ◦N1‖BMO,

and∥∥∥∥∫ T

0
g(s, ys−, zs) d[N3,M ]s

∥∥∥∥
Lp

≤ 2p‖y‖Sp‖β 1

2 ◦M‖BMO‖β
1

2 ◦N3‖BMO

+
√
2p‖z ◦M‖Hp‖γ ◦N3‖BMO,
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which leads to that F ∈ Sp. Since P ∈ Γe(M), by Lemma 2.7, we know that
M has the strong property of predicable representation. Thus there exists a
predictable process Z such that

Ft = F0 +

∫ t

0
Zs dMs.

This implies

Ft +

∫ T

t+
ZsdMs = ξ + JT +

∫ T

t+
f(s, ys−)d[N1, N2]s

+

∫ T

t+
g(s, ys−, zs)d[N3,M ]s.

We define

Yt := Ft − Jt −
∫ t

0
f(s, ys−) d[N1, N2]s −

∫ t

0
g(s, ys−, zs) d[N3,M ]s.

It follows that (Y, Z ◦M) is a solution of BSDE (10).
Note that

Yt = −Jt + E [ξ + JT |Ft] + E

[∫ T

t+
f(s, ys−) d[N1, N2]s

∣∣∣∣ Ft

]
+E

[∫ T

t+
g(s, ys−, zs) d[N3,M ]s

∣∣∣∣ Ft

]
.

In view of Doob’s inequality, we have

‖Y ‖Sp ≤ ‖J‖Sp + q‖ξ + JT ‖Lp

+2pq‖α ◦N1‖BMO‖N2‖BMO‖y‖Sp

+2pq‖β 1

2 ◦M‖BMO‖β
1

2 ◦N3‖BMO‖y‖Sp

+
√
2pq‖γ ◦N3‖BMO‖z ◦M‖Hp .

According to BDG inequality, we have

‖Z ◦M‖Hp ≤ Cp ‖Z ◦M‖Sp ≤ 2Cp

∥∥∥∥∫ T

t+
Z dMs

∥∥∥∥
Sp

≤ 2Cp‖Y ‖Sp + 2Cp‖ξ + JT ‖Lp + 2Cp‖J‖Sp

+4pCp‖y‖Sp‖N2‖BMO‖α ◦N1‖BMO
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4pCp‖y‖Sp‖β 1

2 ◦M‖BMO‖β
1

2 ◦N3‖BMO

+2
√
2pCp‖z ◦M‖Hp‖γ ◦N3‖BMO.

Concluding the above, we have

‖Y ‖Sp + ‖Z ◦M‖Hp ≤ Cp‖ξ + JT ‖Lp + (1 + 4Cp) ‖J‖Sp

+2pCp ‖α ◦N1‖BMO ‖N2‖BMO ‖y‖Sp

+2pCp

∥∥∥β 1

2 ◦M
∥∥∥
BMO

∥∥∥β 1

2 ◦N3

∥∥∥
BMO

‖y‖Sp

+
√
2pCp ‖γ ◦N3‖BMO ‖z ◦M‖Hp .(11)

Then we get that the solution (Y, Z ◦M) of BSDE (10) is in Sp ×Hp. The
uniqueness can be easily proved if one estimates ‖Y 1−Y 2‖Sp +‖(Z1−Z2)◦
M‖Hp via a similar calculation to the one that led to (11).

We shall still use the contraction mapping principle to prove the exis-
tence and uniqueness of the solution. Similar to the proof of Theorem 3.1,
since the martingale (N2, β

1

2 ◦M,γ ◦N3, β
1

2 ◦N3) is �ε-sliceable in (BMO)4

with the corresponding finite sequence of stopping times {Ti, i = 0, . . . , Ĩ+
1}, we can show that the BSDE

Yt = Y i+1
Ti+1

+ (JTi+1
− Jt) +

∫ Ti+1

t+
f(s, Ys−) d[N1i, N2i]s

+

∫ Ti+1

t+
g(s, Ys−, Zs) d[N3i,Mi]s −

∫ Ti+1

t+
Zs dMis,

has a unique solution (Y i, Zi ◦Mi) in Sp
i ×Hp

i for i = 0, 1, · · · , Ĩ, inductively
in a backward way. Then, the process (Y, Z ◦M) given by

Yt :=

˜I∑
i=0

Y i
t χ[Ti,Ti+1)(t) and Zt :=

˜I∑
i=0

Zi
tχ[Ti,Ti+1)(t)

lies in Sp ×Hp and is the unique adapted solution to BSDE (9). Moreover,
we have

(1− ρp)
(
‖Y ‖Sp +

∥∥Zi ◦M
∥∥
Hp

)
≤ Cp ‖ξ + JT ‖Lp + (4Cp + 1) ‖J‖Sp .(12)

This completes the proof.



584 Yunzhang Li and Shanjian Tang

4. Linear BSDEs with jumps

In this section, we consider BSDE (1) with f = 0, J = 0 and g being linear
with z and independent of y:

(13) Yt = ξ +

∫ T

t+
γ(s)Zs d[N3,M ]s −

∫ T

t+
Zs dMs −

∫ T

t+
dM⊥

s , t ∈ [0, T ].

In Theorem 3.2, the terminal value ξ is assumed to be essentially bounded
to get that Z ◦ M ∈ BMO. For the special BSDE (13), it is sufficient to
assume that ξ ∈ BMO so as to guarantee that Z ◦M ∈ BMO.

Theorem 4.1. Assume that γ ◦N3 is ε-sliceable in BMO such that

ε < (4
√
5 +

√
10c−1

1 )−1,

where c1 is the constant in the BDG inequality for p = 1. Then for any ξ ∈
BMO, BSDE (13) has a unique solution (Y, Z◦M,M⊥) ∈ ∩

p>1
Sp×(BMO)2

such that

‖Z ◦M‖BMO +
∥∥∥M⊥

∥∥∥
BMO

≤ K‖ξ‖BMO

where K is a positive constant independent of ξ.

To prove Theorem 4.1, firstly we need to prove the following lemma.

Lemma 4.1. If X,M ∈ BMO, we have

‖[X,M ]T ‖BMO ≤ (4
√
5 +

√
10c−1

1 )‖X‖BMO‖M‖BMO,

where c1 is the constant in BDG inequality for p = 1.

Proof of Lemma 4.1. Take Y ∈ H1. Using stopping times {τn, n = 1, 2, . . .}
to make all the processes mentioned in this lemma bounded for any fixed n,
we have ∣∣∣E [[Y,EF· [X,M ]T ]

τn
T

]∣∣∣
=

∣∣∣E [Y τn
T E

FT [X,M ]T

]∣∣∣ = ∣∣E [Y τn
T [X,M ]T

]∣∣
=

∣∣∣∣E [∫ T

0
Y τn
s−d[X,M ]s +

∫ T

0
[X,M ]s−dY

τn
s + [Y τn , [X,M ]]T

]∣∣∣∣
=

∣∣E [[Y τn
− ◦X,M ]T + [Y τn , [X,M ]]T

]∣∣
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=

∣∣∣∣∣∣E [[Y τn
− ◦X,M ]T

]
+ E

⎡⎣ ∑
0<s≤T

ΔY τn
s Δ[X,M ]s

⎤⎦∣∣∣∣∣∣
≤

∣∣E [[Y τn
− ◦X,M ]T

]∣∣+ E

⎡⎣ sup
0<s≤T

|ΔXs|
∑

0<s≤T

|ΔY τn
s ΔMs|

⎤⎦ ,

where E
Ft [ · ] := E[ · |Ft], 0 ≤ t ≤ T . According to the discontinuous

BMO martingale theory (see e.g. [19, page 200]), if X ∈ BMO, then X

has bounded jumps satisfying

sup
0<s≤T

|ΔXs| ≤ 2
√
2‖X‖BMO.

Thus we have∣∣∣E [[Y,EF· [X,M ]T ]
τn
T

]∣∣∣ ≤
∣∣E [[Y τn

− ◦X,M ]T
]∣∣

+2
√
2‖X‖BMO

∣∣∣∣E [∫ T

0
|d[Y τn ,M ]s|

]∣∣∣∣ .
According to Fefferman’s inequality and Lemma 2.9, we have∣∣∣E [[Y,EF· [X,M ]T ]

τn
T

]∣∣∣ ≤
√
2‖Y τn

− ◦X‖H1‖M‖BMO

+4‖X‖BMO‖Y τn‖H1‖M‖BMO

≤
√
2‖Y τn‖S1‖X‖BMO‖M‖BMO

+4‖X‖BMO‖Y τn‖H1‖M‖BMO.

Using Lemma 2.8 and the BDG inequality, it follows∣∣∣E [[Y,EF· [X,M ]T ]
τn
T

]∣∣∣ ≤
√
2c−1

1 ‖Y τn‖H1‖X‖BMO‖M‖BMO

+4‖X‖BMO‖Y τn‖H1‖M‖BMO

≤
√
2c−1

1 ‖Y ‖H1‖X‖BMO‖M‖BMO

+4‖X‖BMO‖Y ‖H1‖M‖BMO.

In view of the well-known Fatou’s Lemma, we can get that∣∣∣E [[Y,EF· [X,M ]]T

]∣∣∣ ≤ (4 +
√
2c−1

1 )‖X‖BMO‖Y ‖H1‖M‖BMO.
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Using Lemma 2.5, we have

‖[X,M ]T ‖BMO = ‖EF· [X,M ]T ‖BMO

≤
√
5 sup
‖Y ‖H1≤1

{∣∣∣E [[Y,EF· [X,M ]]T

]∣∣∣}
≤ (4

√
5 +

√
10c−1

1 )‖X‖BMO‖M‖BMO.

This completes the proof.

Proof of Theorem 4.1. For any z ◦ M ∈ BMO, consider the following BS-
DEs:

(14) Yt = ξ +

∫ T

t+
γ(s)zs d[N3,M ]s −

∫ T

t+
Zs dMs −

∫ T

t+
dM⊥

s .

We define

Ft := E

[
ξ +

∫ T

0
γ(s)zs d[N3,M ]s

∣∣∣∣ Ft

]
.

By Doob’s inequality and Lemma 2.9, we know that F ∈ Sp for any p ∈
(1,∞). According to Lemma 2.6, we know that BSDE (14) admits a solution
(Y, Z ◦M,M⊥) such that

Yt = E

[
ξ +

∫ T

t+
γ(s)zs d[N3,M ]s

∣∣∣∣ Ft

]
∈ Sp

for any p ∈ (1,∞), and

(Z ◦M +M⊥)t = E [ξ|Ft] + E

[∫ T

0
γ(s)zs d[N3,M ]s

∣∣∣∣ Ft

]
− Y0.

According to Lemma 4.1, we have

‖Z ◦M‖BMO ≤ ‖Z ◦M +M⊥‖BMO

≤ ‖ξ‖BMO + ‖[γ ◦N3, z ◦M ]T ‖BMO

≤ ‖ξ‖BMO + (4
√
5 +

√
10c−1

1 )‖γ ◦N3‖BMO‖z ◦M‖BMO.

We are going to use the contraction mapping principle to prove the
existence and uniqueness of the solution. Consider the following map I in
the Banach space BMO: for z ◦ M ∈ BMO, define I(z ◦ M) to be the
component Z ◦ M of the unique adapted solution (Y, Z ◦ M,M⊥) of the
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BSDE (14). Let zi ◦M ∈ BMO with i = 1, 2. Denote by Zi ◦M the image

I(zi ◦M) for i = 1, 2. Similar to the above arguments, we can show that∥∥(Z1 − Z2) ◦M
∥∥
BMO

≤ (4
√
5 +

√
10c−1

1 ) ‖γ ◦N3‖BMO

×
∥∥(z1 − z2) ◦M

∥∥
BMO

.

The rest of the proof is identical to that of Theorem 3.1. This completes the

proof.
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ential equations driven by càdlàg martingales. Teor. Veroyatn. Primen.,

52:375–385, 2007. MR2742510

http://www.ams.org/mathscinet-getitem?mr=2288712
http://www.ams.org/mathscinet-getitem?mr=0329726
http://www.ams.org/mathscinet-getitem?mr=0406663
http://www.ams.org/mathscinet-getitem?mr=0520007
http://www.ams.org/mathscinet-getitem?mr=2008603
http://www.ams.org/mathscinet-getitem?mr=2742510


588 Yunzhang Li and Shanjian Tang
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