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1. Introduction

In this paper we consider the following fully nonlinear second-order PDEs in multiple space dimensions:{
ut = F (D2u,∇u, u, x, t), (x, t) ∈ D × (0, T ],

u(x, 0) = u0(x), x ∈ D. (1.1)

We shall consider the periodic boundary condition: x ∈ D ≜ Td, where Td is the d-dimensional torus (d ≥ 1). Notice that
the assumption of periodic boundary condition is for simplicity of exposition only and is not essential: the method can
be easily designed for arbitrary domain and for non-periodic boundary condition. Fully nonlinear second-order PDEs (1.1)
arise from many scientific and engineering fields such as astrophysics, antenna design, geostrophic fluid dynamics, image
processing, materials science, mathematical finance, mesh generation, meteorology, optimal transport, and stochastic
control (cf. [1–4] and the references therein); they are a class of PDEs which are very difficult to analyse and even more
challenging to approximate numerically. The goal of this paper is to develop a local discontinuous Galerkin (LDG) method
for (1.1) with proving its optimal error estimates and applying the scheme to stochastic control problems.

The first DG method was introduced by Reed and Hill to solve a steady linear transport problem [5] in 1973. The
LDG method was introduced by Cockburn and Shu [6] for solving quasi-linear convection diffusion equations, which was
motivated by the successful numerical experiments of Bassi and Rebay [7] for the compressible Navier–Stokes equations.
This scheme is an extension of the discontinuous Galerkin (DG) method developed by Cockburn et al. [8–11] for nonlinear
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yperbolic systems and shares with the DG method its advantage and flexibility: (1) it allows for easy design of high-
rder approximations, which in turn allows for efficient p-adaptivity; (2) it is flexible on complicated geometries, which
llows for efficient h-adaptivity; (3) it is local in data communications, which allows for efficient parallel implementations.
he LDG method also inherits many good properties such as conservation, L2-boundedness, optimal error estimates and
uper-convergence results from the conventional DG scheme, which makes it quite attractive.
Due to their fully nonlinear structures disenable us to perform a direct integration by parts, fully nonlinear PDEs do

ot have variational formulations in general. So in fact, there was no weak solution concept for fully nonlinear PDEs
ntil Crandall and Lions [12] introduced the notion of viscosity solutions for fully nonlinear first-order PDEs. Then their
otion and theory were quickly extended to fully nonlinear second-order PDEs. The non-variational structure prevents
he applicability of standard Galerkin type methods such as DG methods. On the other hand, we have to say that,
o approximate the low-regularity viscosity solutions, it is natural to use totally discontinuous piece-wise polynomial
unctions (i.e., DG functions) due to their flexibility and the larger approximation spaces.

Concerning the study of DG schemes for the fully nonlinear first-order time-dependent Hamilton–Jacobi (HJ) equations,
et us first mention that Hu and Shu [13] developed a DG scheme based on the classical Runge–Kutta DG method for
olving conservation laws satisfied by the first-order derivative of the solution. Later, Li and Shu [14] reinterpreted the
ethod in [13] by using a curl-free subspace for the DG method in the two-dimensional case, resulting in a significant
implification in implementation with a reduced cost. After that, Cheng and Shu [15] proposed a DG method for directly
olving HJ equations without going through the derivative of the solution. Also, Yan and Osher [16] designed a direct
DG method for approximating HJ equations. More recently, Xiong, Shu and Zhang [17] obtained a priori optimal error
stimates for the DG and LDG methods in [15,16] for smooth solutions.
In regard to the study of the DG type schemes for fully nonlinear second-order PDEs, Feng and Lewis [18] first

esigned a class of nonstandard mixed interior penalty DG method, which works well provided that the viscosity solutions
elong to C0

(
D
)

∩ H1 (D) and the polynomial degree k is greater than or equal to 1. After that, they [19,20] presented
non-standard LDG methods by using multiple approximations of first and second-order derivatives for fully nonlinear
second-order PDEs in both one and multi-dimensional cases. But none of these articles gives the theoretical error estimates
for numerical solutions. It is also worth noting that Brenner and Neilan et al. investigated some finite element methods
for approximating smooth solutions of fully nonlinear PDEs with convergence analysis (see e.g. [21,22]).

In this paper, inspired by [16,19,20] we present an LDG method for directly solving fully nonlinear second-order
PDEs (1.1) in multiple space dimensions by using the alternating numerical flux. It should be pointed out that our LDG
method can be regarded as a special case of the non-standard LDG methods proposed in [19,20], in which the error
estimates were not analysed. We drop the numerical moment term to make our scheme more easier to implement
compared the LDG methods in [19,20]. To fill the gap in numerical analysis of the DG type methods for fully nonlinear
second-order PDEs, we also follow and generalize the techniques in [17,23–25] to prove a priori L2-error estimates for
lassical strong solutions with enough smoothness and integrability. To theoretically analyse our numerical scheme, we
eed to make the following uniformly parabolic assumption.

(Pδ) The function F : Rd×d
× Rd

× R × D × [0, T ] −→ R is in C2
b , and there exists a constant δ > 0 such that for each

(x, t) ∈ D × [0, T ], it holds

FP (Θ) :=

[
∂F
∂pml (Θ)

]
d×d

≥ δId,

where Θ := (P, v⃗, u, ·) (x, t) ∈ Rd×d
× Rd

× R × D × [0, T ], with u being the unique exact solution of (1.1),
v⃗ = [vm]d×1 := ∇u =

[
∂u
∂xm
]
d×1 and P =

[
pml
]
d×d := D2u =

[
∂vl

∂xm

]
d×d

.

Note that the non-degenerate and smooth condition (Pδ) is used only in the theoretical proof of error estimates, not in
the implementation of our LDG method. In Sections 4 and 5, some of the numerical experiments do not fall in the scope of
the present set-up. However the numerical results show that the algorithm is robust enough and works well even in the
degenerate and non-smooth cases. The paper is organized as follows. In Section 2, we introduce notations and definitions
used later in this paper. In Section 3, we state the LDG method for fully nonlinear second-order PDEs and present a priori
error estimates for smooth solutions. In Section 4, we present a series of numerical results to validate the LDG method. In
Section 5, we use our numerical method to solve stochastic optimal control problems. In Section 6, we give the technical
proofs of the convergence results for the LDG method. Finally, in Section 7, concluding remarks are given.

2. Notations and definitions

2.1. One-dimensional case

We denote the mesh by Ij =

[
xj− 1

2
, xj+ 1

2

]
, for j = 1, . . . ,N . The nodes are denoted by

{
xj+ 1

2
, j = 0, . . . ,N

}
with

x 1 = 0 and x 1 = 1. We define x :=
1
(
x 1 + x 1

)
. The mesh size is h := x 1 − x 1 , with h = max h
2 N+ 2
j 2 j− 2 j+ 2

j j+ 2 j− 2
1≤j≤N j

2
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eing the maximum mesh size. For a given function f , we denote f
(
x±

j+ 1
2

)
by f ±

j+ 1
2
, where x+

j+ 1
2

:= limx↘x
j+ 1

2
x and

−

j+ 1
2

:= limx↗x
j+ 1

2
x. The finite element space is

V k
h :=

{
f : f ∈ Pk(Ij), for x ∈ Ij, j = 1, . . . ,N

}
,

where Pk(Ij) is the space of polynomials of total degree at most k. Note that functions in V k
h might have discontinuities

on an element interface.

2.2. Multi-dimensional case

We consider triangulations of D = Td with d ≥ 2, Th = { K }, made of nonoverlapping polyhedra completely covering
D. The diameter of K is denoted by hK and the maximum hK , for K ∈ Th is denoted by h. We require the triangulations
Th to be regular. The centroid of the triangular K is denoted by xK . We denote the boundary of element K by ∂K . Let Γh
denote the union of the boundary faces of elements K ∈ Th, i.e. Γh :=

⋃
K∈Th

∂K . The outward normal unit vector to ∂K
is denoted by n⃗K .

We use the notation(
f , g⃗ · n⃗K

)
∂K :=

∫
∂K

f (x)g⃗(x) · n⃗K dΓ (x),
(
f , g⃗ · n⃗K

)
Γh

:=

∑
K∈Th

(f , g⃗ · n⃗K )∂K ,

for any functions f , g⃗ in the broken Sobolev space H1,2(Th), which is the space of functions that are elementwise in H1,2

Sobolev space.
For a given function f , f + denotes the value of f evaluated from a predesignated ‘‘plus’’ side along an edge e, which is

always the boundary of two neighbouring elements. For example, we could choose a fixed vector β⃗ , which is not parallel
with any element boundary, and then designate the ‘‘plus’’ side to be the side at the end of the arrow of the normal n⃗K
with n⃗K · β⃗ > 0. The definition of f − is given in a similar way. For more details, we refer to [26].

The finite element spaces associated with the mesh Th are of the form

V k
h :=

{
v : v|K ∈ Vk(K ), for K ∈ Th

}
,

where Vk(K ) denotes the local space on the element K . For triangular meshes, we let Vk(K ) = Pk(K ), where Pk(K ) is the
space of polynomials of total degree at most k. For Cartesian meshes, we let Vk(K ) = Q k(K ), where Q k(K ) is the space of
tensor product of polynomials of degrees at most k in each variable.

For the function F (P, v⃗, u, x, t), we denote

FPP :=

[
∂2F

∂pml∂pij

]
d×d×d×d

, FP :=

[
∂F
∂pml

]
d×d

, Fv⃗ :=

[
∂F
∂vm

]
d×1

, Fu :=
∂F
∂u
,

where (P, v⃗, u, x, t) ∈ Rd×d
× Rd

× R × D × [0, T ]. The norm of a d1 × d2 matrix y is given by |y| :=

√
trace(yyT). We

rite ∥ · ∥ and ∥ · ∥Hm for the L2(D)-norm and Sobolev norm ∥ · ∥Hm,2(D), respectively. We denote by Cm
b the space of

ontinuous functions with bounded m-order derivatives.
Throughout the paper, by saying that a vector-valued or matrix-valued function belongs to a function space, we mean

ll the components belong to that space. By C > 0, we denote a generic constant, which in particular does not depend
n the discretization width h and possibly changes from line to line. When there is no ambiguity, we omit the argument
in the proofs for simplicity of notations.

. The LDG method and error estimates

.1. One-dimensional case

To illustrate the idea of our scheme, for the sake of easy presentation, we first consider the model problem with d = 1:{
ut = F (uxx, ux, u, x, t), (x, t) ∈ T × (0, T ],

u(x, 0) = u0(x), x ∈ T. (3.1)

3.1.1. The LDG method in one space dimension
As a special class of the DG methods, the main technique of the LDG method is to rewrite (3.1) into an equivalent

system containing only first-order spatial derivatives, which is further discretized by the standard DG method with correct
definition of numerical fluxes. To do this, firstly, we rewrite the problem as a first-order system:⎧⎨⎩

ut = F (p, v, u, x, t), (a)
v = ux, (b) (3.2)

p = vx. (c)

3
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The LDG method for (3.1) is now obtained by simply discretizing the above system with the DG method. We seek an
pproximation (uh, vh, ph) to the exact solution (u, v, p) such that for any t ∈ [0, T ], (uh, vh, ph)(·, t) belongs to the finite
imensional space V k

h . In order to determine the approximate solution (uh, vh, ph), we first note that by multiplying (3.2a),
3.2b), (3.2c) with arbitrary smooth functions zu, zv , zp, respectively, and integrating over Ij with j = 1, 2, . . . ,N , we get,
fter a simple formal integration by parts in(3.2b) and (3.2c),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ij

ut (x, t) zu(x)dx =

∫
Ij

F (p, v, u, ·)(x, t)zu(x)dx,∫
Ij

v (x, t) zv(x)dx = −

∫
Ij

u (x, t) (zv)x (x) dx + [u (·, t) zv]
⏐⏐⏐x−j+ 1

2
x+
j− 1

2

,∫
Ij

p (x, t) zp(x)dx = −

∫
Ij

v (x, t) (zp)x (x) dx +
[
v (·, t) zp

] ⏐⏐⏐x−j+ 1
2

x+
j− 1

2

.

Next, in the above weak formulation, we replace the smooth function (zu, zv, zp) with the test function (zh,u, zh,v, zh,p)
n the finite element space V k

h and the exact solution (u, v, p) with the approximation (uh, vh, ph). Since the functions in
k
h might have discontinuities on an element interface, we must also replace the boundary terms u(xj+ 1

2
, t) and v(xj+ 1

2
, t)

with the numerical fluxes ûj+ 1
2
(t) and v̂j+ 1

2
(t), respectively, which are defined by

ûj+ 1
2
(t) := uh

(
x−

j+ 1
2
, t
)
, v̂j+ 1

2
(t) := vh

(
x+

j+ 1
2
, t
)
, (3.3)

or j = 0, 1, . . . ,N . Note that, by periodicity, we have

û 1
2

= ûN+
1
2

and v̂N+
1
2

= v̂ 1
2
.

Thus, the approximate solution given by the LDG method is defined as the solution of the following weak formulation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ij

(uh)t (x, t) zh,u(x)dx =

∫
Ij

F (ph, vh, uh, ·) (x, t) zh,u(x)dx, (a)∫
Ij

vh (x, t) zh,v(x)dx = −

∫
Ij

uh (x, t) (zh,v)x(x)dx + uh

(
x−

j+ 1
2
, t
)
zh,v

(
x−

j+ 1
2

)
− uh

(
x−

j− 1
2
, t
)
zh,v

(
x+

j− 1
2

)
, (b)∫

Ij

ph (x, t) zh,p(x)dx = −

∫
Ij

vh (x, t) (zh,p)x(x)dx + vh

(
x+

j+ 1
2
, t
)
zh,p

(
x−

j+ 1
2

)
− vh

(
x+

j− 1
2
, t
)
zh,p

(
x+

j− 1
2

)
, (c)

(3.4)

or any (zh,u, zh,v, zh,p) in V k
h . We define the initial value of the LDG method to be the L2-projection of u0, i.e., uh(·, 0) := Pu0.

emark 3.1. The choice of (̂u, v̂ ) in (3.3) is called alternating flux, which is essential for the proof of optimal error
stimates. We can also define the numerical flux in an alternating way as

ûj+ 1
2
(t) := uh(x+

j+ 1
2
, t) and v̂j+ 1

2
(t) := vh(x−

j+ 1
2
, t).

For simplicity of notation, for j = 1, 2, . . . ,N and piece-wisely smooth functions f and g , we define

H±

j (f , g) := −

∫
Ij

f (x) gx(x) dx + f
(
x±

j+ 1
2

)
g
(
x−

j+ 1
2

)
− f

(
x±

j− 1
2

)
g
(
x+

j− 1
2

)
. (3.5)

hen the LDG method (3.4) reads, for any (zh,u, zh,v, zh,p) in V k
h ,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ij

(uh)t (x, t) zh,u(x)dx =

∫
Ij

F (ph, vh, uh, ·) (x, t) zh,u(x)dx, (a)∫
Ij

vh (x, t) zh,v(x)dx = H−

j

(
uh(·, t) , zh,v

)
, (b)∫

Ij

ph (x, t) zh,p(x)dx = H+

j

(
vh(·, t) , zh,p

)
, (c)

(3.6)

where j = 1, 2, . . . ,N and uh(·, 0) := Pu0. As a semi-discrete scheme, the algorithm (3.6) is not difficult for numerical
implementation. In fact, given uh, one first uses (3.6b) to locally solve for vh, then uses (3.6c) to locally solve ph, and finally
uses (3.6a) to locally solve for the update of u .
h

4
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.1.2. Optimal error estimates in one space dimension
Let u be the exact solution of the problem (3.1) with (v, p) := (ux, uxx). The numerical solution (uh, vh, ph) is calculated

y the semi-discrete LDG scheme (3.6). We have the following convergence result for our numerical methods, and its
roof is given in Section 6.2.

heorem 3.1. Let Assumption (Pδ) hold, and the considered fully nonlinear PDEs (3.1) admit a unique solution u ∈ L∞

(0, T ),Hk+2(D)). If the finite element space V k
h is the piece-wise polynomial space of degree k ≥ 2, then for small enough h,

there holds the following optimal error estimate

sup
0≤t≤T

∥u(·, t) − uh(·, t)∥ +

(∫ T

0
∥ux(·, t) − vh(·, t)∥2 dt

) 1
2

≤ Chk+1,

here the positive constant C depends on T , δ, k, ∥u∥L∞((0,T ),Hk+2(D)) and the bounds of Fp, Fv , Fu and Fpp.

emark 3.2. Note that the assumption k ≥ 2 in Theorem 3.1 is only for the theoretical analysis of optimal error estimates,
nd is not necessary in the numerical implementation. The numerical experiments in Section 4 indicate that our scheme
till works well when k < 2. The similar conclusion also holds in the multi-dimensional case.

.2. Multi-dimensional case

In this subsection, we generalize the scheme discussed in the previous subsection to multiple space dimensions
= (x1, . . . , xd) ∈ D = Td.

.2.1. The LDG method in multiple space dimension
Similar to the one-dimensional case, to define the LDG method in multiple space dimensions, we first rewrite (1.1) as

first order system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = F (P, v⃗, u, x, t),

vi =
∂u
∂xi
, i = 1, . . . , d,

pml
=
∂vl

∂xm
, m, l = 1, . . . , d.

We denote v⃗ =
[
vi
]
d×1 and P =

[
pml
]
d×d. We proceed exactly as in the one-dimensional case. This time, however, the

integrals are made on each element K of the triangulation Th. For arbitrary smooth functions zu, z⃗v = (z1v , . . . , z
d
v )

T and
zp, and for all d × d matrices AK =

[
Aml
K

]
d×d, it holds that∫

K
ut (x, t)zu(x)dx =

∫
K
F (P, v⃗, u, ·)(x, t)zu(x)dx,∫

K
v⃗(x, t) · z⃗v(x)dx = −

∫
K
u(t, x)∇ · z⃗v(x)dx +

(
u|intK (t, ·), z⃗v|intK · n⃗K

)
∂K ,∫

K

d∑
m,l=1

Aml
K pml(x, t)zp(x)dx = −

∫
K
AK v⃗(x, t) · ∇zp(x)dx +

(
AK v⃗|

intK
· n⃗K , zp|intK

)
∂K , (3.7)

where f |intK denotes the value of the considered function f evaluated from inside the element K .
Next, we replace the smooth functions zu, z⃗v and zp by test functions zh,u, z⃗h,v = (z1h,v, . . . , z

d
h,v)

T and zh,p, respectively,
in the finite element space V k

h , and the exact solution (u, v⃗,P ) by the approximate solution (uh, v⃗h,Ph). Here we denote
v⃗h :=

[
vih
]
d×1 and Ph :=

[
pml
h

]
d×d. We again need to carefully choose numerical fluxes for the boundary terms resulting

from the procedure of integration by parts. We still choose the alternating numerical flux û = u−

h and ˆ⃗v = v⃗+

h , where the
‘‘plus’’ side and ‘‘minus’’ side are defined in Section 2.2. Then we obtain the LDG scheme for fully nonlinear second-order
PDEs in multi-dimensional case, which is the following weak formulation on each K of the triangulation Th: for each fixed
t ∈ [0, T ], it holds that for all d × d matrices AK =

[
Aml
K

]
d×d⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
K
(uh)t (x, t)zh,u(x)dx =

∫
K
F (Ph, v⃗h, uh, ·)(x, t)zh,u(x)dx, (a)∫

K
v⃗h(x, t) · z⃗h,v(x)dx = H−

K

(
uh(·, t), z⃗h,v

)
, (b)∫ d∑

Aml
K pml

h (x, t)zh,p(x)dx = H+

K

(
AK v⃗h(·, t), zh,p

)
, (c)

(3.8)
K m,l=1

5
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w

ith uh(·, 0) := Πu0, where Π is the standard L2-projection onto V k
h , and the bilinear functionals are defined as

H+

K

(
g⃗, f

)
:= −

∫
K
g⃗(x) · ∇f (x)dx +

(
g⃗ +

· n⃗K , f |intK
)
∂K ,

H−

K

(
f , g⃗

)
:= −

∫
K
f (x)∇ · g⃗(x)dx +

(
f −, g⃗|

intK
· n⃗K

)
∂K .

Remark 3.3. Note that the scheme (3.8c) stands for all d × d matrices AK =
[
Aml
K

]
d×d, which is designed based on (3.7)

resulted form the Green formula. In practice, one can compute pml
h by setting Aij

K := δml for each fixed l,m ∈ {1, . . . , d},
where δml equals to 1 if (i, j) = (m, l), and equals to 0 otherwise.

3.2.2. Error estimates in multiple space dimensions
Now we give a priori error estimates for the approximation (uh, v⃗h,Ph) given by the LDG method (3.8) in multi-

dimensional case. Let u be the exact solution of the problem (1.1) with (v⃗,P) := (∇u,D2u). Without loss of generality, we
study the error estimates in two dimensions (d = 2). The proof of the following theorem is presented in Section 6.3.

Theorem 3.2. Let Assumption (Pδ) hold and the considered fully nonlinear PDEs (1.1) admit a unique solution u ∈

L∞((0, T ),Hk+2(D)). For the two-dimensional Cartesian meshes with Q k elements and k ≥ 3, there holds the following optimal
error estimates

sup
0≤t≤T

∥u(·, t) − uh(·, t)∥ +

(∫ T

0
∥∇u(·, t) − v⃗h(·, t)∥2 dt

) 1
2

≤ Chk+1
;

nd for the two-dimensional triangular meshes with Pk elements and k ≥ 4, there holds the following sub-optimal error
estimates

sup
0≤t≤T

∥u(·, t) − uh(·, t)∥ +

(∫ T

0
∥∇u(·, t) − v⃗h(·, t)∥2 dt

) 1
2

≤ Chk,

here the positive constant C depends on T , δ, k, ∥u∥L∞((0,T ),Hk+2(D)) and the bounds of FP, Fv⃗ , Fu and FPP.

. Numerical experiments

Up to now, we have taken the method of lines approach and have left time t continuous. According to the continuity
and boundedness assumption of F , it can be shown that the method of line ODE

ϕt = L(ϕ, t),

admits a unique solution and we can use high-order Runge–Kutta methods to solve it. The third-order Runge–Kutta
method that we use in this paper is given by

ϕn+1
= ϕn

+
1
9
(2ψ1 + 3ψ2 + 4ψ3) , (4.1)

here⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ1 = ∆t L
(
ϕn, tn

)
,

ψ2 = ∆t L
(
ϕn

+
1
2
ψ1, tn +

1
2
∆t
)
,

ψ3 = ∆t L
(
ϕn

+
3
4
ψ2, tn +

3
4
∆t
)
.

Next we are going to use the time discretization (4.1) to provide numerical experimental results for demonstrating the
behaviour of our LDG scheme. Since the considered fully nonlinear PDEs (1.1) involve second-order spatial derivatives,
in all experiments, we need to adjust the time step to ∆t ∼ (∆x)2 to guarantee the stability for the explicit time
discretization. Moreover, by setting ∆t ∼ (∆x)2, the scheme in time is efficiently sixth-order with respect to h. In the
future, we plan to investigate some implicit–explicit scheme to relax this small step restriction.

Although in the numerical analysis we assume that the coefficients of the fully nonlinear equations are bounded
and smooth enough, it is worth trying to apply the LDG scheme to some nonlinear equations with unbounded and
discontinuous coefficients in this section. And the numerical experiments shows that our LDG scheme works well in
different cases.

4.1. One-dimensional case

In this subsection, one-dimensional problems are computed using our scheme.
6
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Table 1
Accuracy on (4.2) with T = 0.1.
h k = 0 k = 1 k = 2

e2 Order e2 Order e2 Order

2π/10 2.92E−01 – 3.97E−02 – 1.94E−03 –
2π/20 1.46E−01 1.00 9.94E−03 2.00 2.43E−04 3.00
2π/40 7.32E−02 1.00 2.48E−03 2.00 3.03E−05 3.00

4.1.1. Non-degenerate equation with smooth F in one space dimension
We first consider the non-degenerate fully-nonlinear second-order PDE{

ut (x, t) =
[
(uxx)

3
+ uxx + (ux)

2
+ u2

]
(x, t) + f (x, t),

u(x, 0) = sin(x), (4.2)

here we take

f (x, t) := sin3(x) exp(−3t) − exp(−2t),

uch that the analytic solution of (4.2) is

u(x, t) = sin(x) exp(−t), (x, t) ∈ [0, 2π ] × [0, T ]. (4.3)

Here, we have

F (p, v, u, x, t) = p3 + p + v2 + u2
+ f (x, t),

hich is a smooth function. Since

Fp(p, v, u, x, t) = 3p2 + 1 ≥ 1 > 0,

e know that (4.2) is a non-degenerate equation with δ = 1.
The L2-errors at the terminal time T

e2 := ∥uh(·, T ) − u(·, T )∥

nd their convergence rates are listed in Table 1. We clearly observe (k+1)-th order of accuracy for Pk polynomials, which
onfirms the result in Theorem 3.1.

.1.2. Degenerate equation with smooth F in one space dimension
Although we cannot give the error estimates for the degenerate problems, it is worth trying to apply the LDG

cheme (3.6) to some degenerate equations. So the next example is a degenerate fully-nonlinear second-order PDE{
ut (x, t) =

[
(uxx)

3
+ (ux)

2
+ u2] (x, t) + f (x, t),

u(x, 0) = sin(x), (4.4)

where we take

f (x, t) := sin3(x) exp(−3t) − sin(x) exp(−t) − exp(−2t),

such that the exact solution of (4.4) is (4.3).
Here, we have

F (p, v, u, x, t) = p3 + v2 + u2
+ f (x, t),

and

Fp(p, v, u, x, t) = 3p2 ≥ 0,

which indicates that (4.4) is a degenerate equation.
In this example, we take T = 0.1 and list the numerical results in Table 2, which shows that the optimal (k + 1)-th

order of accuracy still holds for the degenerate case.

4.1.3. Non-degenerate equation with non-smooth F in one space dimension
Next we consider the one-dimensional non-degenerate Hamilton–Jacobi–Bellman (HJB) equation:⎧⎨⎩ ut (x, t) = min

{
1
2
uxx, uxx

}
(x, t) + f (x, t), (4.5)
u(x, 0) = sin(x),
7
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Table 2
Accuracy on (4.4) with T = 0.1.
h k = 0 k = 1 k = 2

e2 Order e2 Order e2 Order

2π/10 2.92E−01 – 4.08E−02 – 2.15E−03 –
2π/20 1.47E−01 0.99 1.03E−02 1.99 2.70E−04 2.99
2π/40 7.34E−02 1.00 2.58E−03 2.00 3.16E−05 3.10

Table 3
Accuracy on (4.5) with T = 0.1.
h k = 0 k = 1 k = 2

e2 Order e2 Order e2 Order

2π/10 2.89E−01 – 3.88E−02 – 1.93E−03 –
2π/20 1.45E−01 0.99 9.66E−03 2.00 2.43E−04 2.99
2π/40 7.27E−02 1.00 2.41E−03 2.00 3.03E−05 3.00

where we take

f (x, t) := − sin(x) exp(−t) + max
{
1
2
sin(x), sin(x)

}
exp(−t),

such that the exact solution of (4.5) is (4.3).
Here, we have

F (p, v, u, x, t) = min
{
1
2
p , p

}
+ f (x, t),

which is a non-smooth function. Note that

Fp(p, v, u, x, t) =

{
1, if p ≤ 0,
1
2
, if p > 0.

Since Fp ≥
1
2 > 0, we know that (4.5) is a non-degenerate equation with δ =

1
2 .

Table 3 gives the errors of numerical solution at T = 0.1 with 0 ≤ k ≤ 2. We clearly see that the LDG method has
ptimal (k + 1)-th order of accuracy for the HJB equation with non-smooth F .

.2. Multi-dimensional case

In this subsection, two-dimensional problems are approximated using our scheme with Cartesian meshes and
riangular meshes.

.2.1. Non-degenerate equation with smooth F in multiple space dimensions
We consider the two-dimensional non-degenerate fully nonlinear second-order PDE⎧⎨⎩ ut (x, y, t) =

[
1
2
(uxx)

3
+

1
2

(
uyy
)3

+∆u
]
(x, y, t) + sin3(x + y) exp(−6t),

u(x, y, 0) = sin(x + y).
(4.6)

ere, we have

F (P, v⃗, u, x, y, t) =

[
1
2
(p11)3 +

1
2
(p22)3 + p11 + p22

]
+ sin3(x + y) exp(−6t),

hich is a smooth function. Since

FP(P, v⃗, u, x, y, t) =

⎡⎢⎣3
2
p211 + 1 0

0
3
2
p222 + 1

⎤⎥⎦ ≥ I2×2,

we know that (4.6) is a non-degenerate equation with δ = 1. The exact solution of (4.6) is

u(x, y, t) = sin(x + y) exp(−2t), (x, y, t) ∈ [0, 2π ]
2
× [0, T ]. (4.7)

Numerical errors at T = 0.1 and their convergence rates are listed in Table 4. We observe that our scheme gives the
ptimal (k+1)-th order of the accuracy for Cartesian meshes with Q k elements, which confirms the result in Theorem 3.2.
or Cartesian meshes with Pk elements, we once again observe the (k + 1)-th order of accuracy. Moreover, we see that
8
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Table 4
Accuracy on (4.6) with T = 0.1.

h k = 0 k = 1 k = 2

e2 Order e2 Order e2 Order

Cartesian 2π/3 1.77E+00 – 6.39E−01 – 1.54E−01 –
meshes with 2π/6 9.21E−01 0.94 1.71E−01 1.90 1.95E−02 2.98
Pk elements 2π/12 4.65E−01 0.99 4.36E−02 1.97 2.45E−03 3.00

Cartesian 2π/3 1.77E+00 – 5.02E−01 – 4.69E−02 –
meshes with 2π/6 9.21E−01 0.94 1.28E−01 1.97 6.22E−03 2.92
Q k elements 2π/12 4.65E−01 0.99 3.21E−02 2.00 7.78E−04 3.00

Triangular 2π/3 1.71E+00 – 6.44E−01 – 1.05E−01 –
meshes with 2π/6 9.19E−01 0.90 1.71E−01 1.92 1.41E−02 2.90
Pk elements 2π/12 4.63E−01 0.99 4.32E−02 1.98 1.77E−03 2.99

Table 5
Accuracy on (4.8) with T = 0.1.

h k = 0 k = 1 k = 2

e2 Order e2 Order e2 Order

Cartesian 2π/3 1.77E+00 – 6.25E−01 – 1.55E−01 –
meshes with 2π/6 9.22E−01 0.94 1.70E−01 1.88 1.95E−02 2.99
Pk elements 2π/12 4.65E−01 0.99 4.34E−02 1.97 2.45E−03 3.00

Cartesian 2π/3 1.77E+00 – 5.64E−01 – 4.84E−02 –
meshes with 2π/6 9.22E−01 0.94 1.36E−01 2.05 6.35E−03 2.93
Q k elements 2π/12 4.65E−01 0.99 3.36E−02 2.02 7.82E−04 3.02

Triangular 2π/3 1.73E+00 – 6.32E−01 – 1.07E−01 –
meshes with 2π/6 9.21E−01 0.91 1.68E−01 1.92 1.40E−02 2.92
Pk elements 2π/12 4.64E−01 0.99 4.20E−02 2.00 1.77E−03 2.99

the scheme with Q k elements is more accurate than the one with Pk elements since Q k elements have more degree of
reedom. For the triangular meshes, though we only get the sub-optimal order of accuracy result in Theorem 3.2, the
umerical experiments indicate that the scheme still has optimal (k + 1)-th order of accuracy for Pk elements.

.2.2. Degenerate equation with smooth F in multiple space dimensions
We solve the two-dimensional degenerate fully nonlinear second-order PDE{

ut =

[
1
2 (uxx)

3
+

1
2

(
uyy
)3

+ uxx + uyy + uxy + uyx

]
+ f ,

u(x, y, 0) = sin(x + y),
(4.8)

here we take

f (x, y, t) := 2 sin(x + y) exp(−2t) + sin3(x + y) exp(−6t),

uch that the exact solution of (4.8) is same as the exact solution of (4.6).
We have

FP(P, v⃗, u, x, y, t) =

⎡⎢⎣3
2
p211 + 1 1

1
3
2
p222 + 1

⎤⎥⎦ ≥

[
1 1
1 1

]
≥ 0,

which indicates that (4.8) is a degenerate equation.
We check the numerical errors and order of convergence at T = 0.1, and we still obtain expected optimal order of

accuracy for the multi-dimensional degenerate case, see Table 5.

4.2.3. Degenerate equation with non-smooth F in multiple space dimensions
We approximate the two-dimensional degenerate HJB equation⎧⎨⎩ ut (x, y, t) = min

{
1
2

[
(x − 1)2 uxx + (y − 1)2 uyy

]
, (x − 1)2 uxx + (y − 1)2 uyy

}
+ f (x, y, t),

u(x, y, 0) = sin(x + y),
(4.9)

where we take

f (x, y, t) := max
{
1
2
sin(x + y), sin(x + y)

} [
(x − 1)2 + (y − 1)2

]
exp(−2t) − 2 sin(x + y) exp(−2t),

such that the exact solution of (4.9) is (4.7).
9
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Table 6
Accuracy on (4.9) with T = 0.1.

h k = 0 k = 1 k = 2

e2 Order e2 Order e2 Order

Cartesian 2π/3 1.82E+00 – 6.23E−01 – 1.53E−01 –
meshes with 2π/6 9.28E−01 0.97 1.65E−01 1.91 1.94E−02 2.98
Pk elements 2π/12 4.66E−01 0.99 4.24E−02 1.96 2.44E−03 2.99

Cartesian 2π/3 1.82E+00 – 4.59E−01 – 4.62E−02 –
meshes with 2π/6 9.28E−01 0.97 1.18E−01 1.96 5.97E−03 2.95
Q k elements 2π/12 4.66E−01 0.99 3.03E−02 1.97 7.63E−04 2.97

Triangular 2π/3 1.76E+00 – 6.13E−01 – 1.07E−01 –
meshes with 2π/6 9.25E−01 0.92 1.64E−01 1.90 1.40E−02 2.94
Pk elements 2π/12 4.64E−01 1.00 4.13E−02 1.99 1.77E−03 2.98

We have

FP(P, v⃗, u, x, y, t) =
1
2

(
1 + 1{

(x−1)2p11+(y−1)2p22≤0
})[(x − 1)2 0

0 (y − 1)2

]
≥ 0,

hich indicates that (4.9) is a degenerate equation.
Both the errors and numerical orders of accuracy are listed in Table 6. We once again observe the designed (k+ 1)-th

rder for this degenerate PDE with non-smooth F .

. Applications to stochastic optimal control

We now show that one can solve stochastic optimal control problems by using our LDG method. To this end, let
s consider the stochastic control problem. The random effect is inherent in most real-world systems. It places many
isadvantages (and sometimes, surprisingly, advantages) on humankind’s efforts, which are usually associated with the
uest for optimal results. The dynamic state equation is described by a controlled stochastic differential equation (SDE){

dXα(·)(t) = b(t, Xα(·)(t), α(t)) dt + σ (t, Xα(·)(t), α(t)) dW (t), t ∈ (s, T ],

Xα(·)(s) = y,

ith the cost functional

J(s, y;α(·)) = E
[∫ T

s
f (t, Xα(·)(t), α(t))dt + h(Xα(·)(T ))

]
,

here
(
Ω,F , {Ft}t≥0,P

)
is a complete filtered probability space on which a d′-dimensional Wiener process W =

W (t) ; t ≥ 0} is defined such that {Ft}t≥0 is the natural filtration generated by W , augmented by all the P-null sets in
F . The basic source of uncertainty in diffusion models is white noise, which represents the joint effects of a large number
of independent random forces acting on the systems. The decision makers must select an optimal decision among all
possible ones to achieve the best expected result related to their goals in the stochastic environment. We aim to find the
optimal control α∗ (·) from the feasible control set

U[s, T ] :=
{
α : [s, T ] ×Ω −→ U |α(·) is {Ft}s≤t≤T -adapted

}
,

such that

J(s, y;α∗(·)) = min
α(·)∈U[s,T ]

J(s, y;α(·)).

We define

V (s, y) := min
α(·)∈U[s,T ]

J(s, y;α(·)),

which is called the value function. The above formulations of the stochastic optimal control can have several concrete
application in the real world such as production planning, investment vs. consumption, reinsurance and dividend management,
technology diffusion, queueing systems in heavy traffic. For more details, we refer to [4] and the references therein.

According to the stochastic verification theorem in the dynamic programming (see e.g. [4,27]), the value function V is
determined by the backward HJB equation involving the second-order spatial derivative{

−Vt (x, t) = min
α∈U

G
(
D2V (x, t),∇V (x, t), x, t, α

)
, (x, t) ∈ Rn

× [0, T ),
V (x, T ) = h(x),

10
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here

G (P, v⃗, x, t, α) =
1
2
tr
(
Pσ (t, x, α)σ (t, x, α)T

)
+ ⟨v⃗, b(t, x, α)⟩ + f (t, x, α).

Moreover, for each (x, t) ∈ Rn
× [0, T ], we have

α(x, t) := E
[
α∗(t)

⏐⏐ Xα∗(·)(t) = x
]

= argmin
α∈U

G
(
D2V (x, t),∇V (x, t), x, t, α

)
. (5.1)

Thus the key is to solve HJB equation. Now, we consider the following one-dimensional (d = d′
= 1) linear system{

dXα(·)(t) =
[
β1Xα(·)(t) + β2α(t) + β3

]
dt +

[
σ1Xα(·)(t) + σ2α(t) + σ3

]
dW (t), t ∈ (s, T ],

Xα(·)(s) = y,

with the α(·)-quadratic cost functional

J(s, y;α(·)) = E
[∫ T

s
f (t, Xα(·)(t))dt + q

∫ T

s
|α(t)|2 dt + sin(Xα(·)(T ))

]
,

where the function f is left to determined later, and the parameters q ∈ R+, β⃗ = (β1, β2, β3) ∈ R3, σ⃗ = (σ1, σ2, σ3) ∈ R3

are given. One can construct the associate backward HJB equation

−Vt = min
α∈U

{
(σ1x + σ2α + σ3)

2

2
Vxx + (β1x + β2α + β3) Vx + qα2

}
+ f (t, x),

with V (x, T ) = sin(x). We define u(x, t) := V (x, T − t). Then the above HJB equation reads

ut = min
α∈U

{(
σ 2
2

2
uxx + q

)
α2

+ (σ1σ2xuxx + σ2σ3uxx + β2ux) α

}
+

1
2
(σ1x + σ3)

2 uxx + (β1x + β3) ux + f (t, x), (5.2)

ith u(x, 0) = sin(x).

.1. Continuous case

Let U := R. In (5.2), we choose q > 0 large enough such that σ2
2
2 uxx + q > 0. According to (5.1), the optimal control is

α(x, t) = −
(σ1σ2x + σ2σ3) uxx(x, T − t) + β2ux(x, T − t)

σ 2
2 uxx(x, T − t) + 2q

, (5.3)

nd the corresponding HJB equation is

ut = −
1
2
(σ1σ2xuxx + σ2σ3uxx + β2ux)

2

σ 2
2 uxx + 2q

+
1
2
(σ1x + σ3)

2 uxx + (β1x + β3) ux + f (t, x), (5.4)

ith u(x, 0) = sin(x), where we take

f (x, t) := e−t
[
1
2
(σ1x + σ3)

2 sin(x) − (β1x + β3) cos(x) − sin(x)
]

+
e−2t [β2 cos(x) − σ1σ2x sin(x) − σ2σ3 sin(x)]2

4q − 2σ 2
2 e−t sin(x)

,

such that the exact solution of (5.4) is (4.3).
We use the LDG method (3.6) to solve (5.4), and approximate the optimal control (5.3) by

αh(x, t) = −
(σ1σ2x + σ2σ3) ph(x, T − t) + β2vh(x, T − t)

σ 2
2 ph(x, T − t) + 2q

. (5.5)

In the numerical test, we set T = 0.1, q = 15, β⃗ =
( 1
5 ,

1
2 ,

1
5

)
, σ⃗ =

( 1
5 ,

1
5 , 1

)
. We compute L2-errors for the HJB solution

and the optimal control

e2 := ∥uh(·, T ) − u(·, T )∥, eα2 := ∥αh(·, 0) − α(·, 0)∥.

The numerical results for e2 and eα2 are shown in Tables 7 and 8. It can be seen that our LDG scheme has optimal (k+1)-th
rder of accuracy both for the HJB solution u and the optimal control α(·).

.2. Discontinuous case

In (5.2), we choose

U = [0, 1], σ = 1, q = β = β = β = σ = σ = 0,
2 1 2 3 1 3

11
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Table 7
Accuracy on (5.4) with T = 0.1, q = 15, β⃗ =

( 1
5 ,

1
2 ,

1
5

)
, σ⃗ =

( 1
5 ,

1
5 , 1

)
.

h k = 0 k = 1 k = 2 k = 3

e2 Order e2 Order e2 Order e2 Order

2π/10 2.94E−01 – 3.87E−02 – 1.94E−03 – 7.48E−05 –
2π/20 1.47E−01 1.00 9.65E−03 2.00 2.43E−04 3.00 4.69E−06 4.00
2π/40 7.36E−02 1.00 2.41E−03 2.00 3.03E−05 3.00 2.93E−07 4.00

Table 8
Accuracy on (5.3), (5.5) with T = 0.1, q = 15, β⃗ =

( 1
5 ,

1
2 ,

1
5

)
, σ⃗ =

( 1
5 ,

1
5 , 1

)
.

h k = 0 k = 1 k = 2 k = 3

eα2 Order eα2 Order eα2 Order eα2 Order

2π/10 1.02E−02 – 6.44E−04 – 3.09E−05 – 1.28E−06 –
2π/20 5.02E−03 1.02 1.63E−04 1.98 3.86E−06 3.00 8.11E−08 3.98
2π/40 2.49E−03 1.01 4.08E−05 2.00 4.83E−07 3.00 5.08E−09 4.00

Table 9
Accuracy on (5.6) with T = 0.1.
h k = 0 k = 1 k = 2 k = 3

e2 Order e2 Order e2 Order e2 Order

2π/10 2.89E−01 – 3.46E−02 – 1.71E−03 – 6.39E−05 –
2π/20 1.45E−01 0.99 9.09E−03 1.93 2.15E−04 2.99 3.99E−06 4.00
2π/40 7.27E−02 1.00 2.30E−03 1.98 2.66E−05 3.01 2.49E−07 4.00

Table 10
Accuracy on (5.7) and (5.8) with T = 0.1.
h k = 0 k = 1 k = 2 k = 3

eα2 Order eα2 Order eα2 Order eα2 Order

2π/10 5.61E−02 – 7.15E−01 – 1.63E−01 – 9.71E−02 –
2π/20 3.96E−02 0.50 2.49E−01 1.52 7.93E−02 1.04 3.96E−02 1.29
2π/40 2.80E−02 0.50 2.80E−02 3.15 3.96E−02 1.00 2.80E−02 0.50

and

f (x, t) = −
e−t

2

(
1 + 1{sin(x)<0}

)
sin(x).

hen the corresponding HJB equation is

ut =
1
2
min {0 , uxx} −

e−t

2

(
1 + 1{sin(x)<0}

)
sin(x), (5.6)

ith u(x, 0) = sin(x); and the optimal control is

α(x, t) = 1 − 1{uxx(x,T−t)≥0}. (5.7)

he exact solution of (5.6) is (4.3). We use the LDG method (3.6) to solve (5.6), and approximate the optimal control (5.7)
y

αh(x, t) = 1 − 1{ph(x,T−t)≥0}. (5.8)

We set T = 0.1. The numerical results are shown in Tables 9 and 10. It can seen from Table 9 that our LDG scheme
has optimal (k+ 1)-th order of accuracy for the HJB solution u. Since the exact optimal control (5.7) is discontinuous, we
o not expect (k + 1)-th order of accuracy in Table 10. However, Fig. 1 shows that our scheme works very well, which
ot only approximates accurately the optimal control in the smooth region, but also resolves the discontinuity sharply. In
eneral, many applications will not satisfy the assumptions in Theorem 3.1 and Theorem 3.2. Nevertheless, the numerical
esults in this section indicates that our scheme still works well in some more general frameworks.
12
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6

6

6

p

f

Fig. 1. Test on (5.7) and (5.8) with T = 0.1, k = 3, N = 40.

. Proofs

.1. Preliminaries

.1.1. Projection properties
For one-dimensional case, we consider the standard L2-projection (denoted by P), and the local Gauss–Radau

rojections (denoted by P±) into space V k
h . For each j = 1, . . . ,N , the projections satisfy that∫

Ij

[Pf (x) − f (x)] g(x) dx = 0, ∀g ∈ Pk(Ij);∫
Ij

[
P+f (x) − f (x)

]
g(x) dx = 0, ∀g ∈ Pk−1(Ij), and P+f (x+

j− 1
2
) = f (xj− 1

2
);∫

Ij

[
P−f (x) − f (x)

]
g(x) dx = 0, ∀g ∈ Pk−1(Ij), and P−f (x−

j+ 1
2
) = f (xj+ 1

2
).

For two-dimensional case, to prove the sub-optimal error estimates with triangular meshes, we are going to use the
standard L2-projection, which is denoted by Π . To prove the optimal error estimates for two-dimensional problems with
Cartesian meshes, we need suitable projections Π± similar to the one-dimensional case. We set β⃗ := (1, 1) and use
projections in [28,29]. Define Π±

:= P±
x ⊗ P±

y , where the subscripts indicate the application of the one-dimensional

operators P± with respect to the corresponding variable. Denote the rectangular partition by Ij×Ji, where Ij =

[
xj− 1

2
, xj+ 1

2

]
and Ji =

[
yi− 1

2
, yi+ 1

2

]
. For each j = 1, . . . ,Nx and i = 1, . . . ,Ny, the projections Π± satisfy:∫

Ij

∫
Ji

(
Π±f (x, y) − f (x, y)

)
g(x, y)dydx = 0, (6.1a)

or any g ∈
[
Pk−1(Ij) ⊗ Pk(Ji)

]
∪
[
Pk(Ij) ⊗ Pk−1(Ji)

]
; and∫

Jm

(
Π+f (x+

n− 1
2
, y) − f (xn− 1

2
, y)
)
g(x+

n− 1
2
, y)dy = 0, (6.1b)∫ (

Π+f (x, y+

1 ) − f (x, ym−
1 )
)
g(x, y+

1 )dx = 0, (6.1c)

In

m− 2 2 m− 2

13
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∫
Jm

(
Π−f (x−

n+ 1
2
, y) − f (xn+ 1

2
, y)
)
g(x−

n+ 1
2
, y)dy = 0, (6.1d)∫

In

(
Π−f (x, y−

m+
1
2
) − f (x, ym+

1
2
)
)
g(x, y−

m+
1
2
)dx = 0, (6.1e)

for any g ∈ Q k(In ⊗ Jm).
Let Q be the projections P , P±, Π and Π±. Then for any function f in Hk+1, we have (c.f. [28–31])

∥Qf − f ∥ + h ∥∇ (Qf − f )∥ + h
1
2 ∥Qf − f ∥Γh ≤ Chk+1, (6.2)

here the positive constant C is independent of h.

6.1.2. Inverse properties
Finally, we list some inverse properties of the finite element space V k

h . For any function wh in V k
h , there exists a positive

constant C , independent of h, such that

h ∥∇wh∥ + h
1
2 ∥wh∥Γh + h

d
2 ∥wh∥∞ ≤ C ∥wh∥ , (6.3)

here d is the spatial dimension. More details of the inverse properties can be found in [31].

.2. Proof of Theorem 3.1

roof. For Z = u, v, p, we define

eZ := Z − Zh = ξZ − ηZ , with ξZ := PZZ − Zh, ηZ := PZZ − Z,

here we choose Pu
:= P−, Pv := P+ and Pp

:= P .
We denote

Θ := (p, v, u, ·) (x, t) and Θh := (ph, vh, uh, ·) (x, t) .

y taking a Taylor expansion, we have

F (Θ) − F (Θh) = F (p, v, u, x, t) − F (ph, v, u, x, t) + F (ph, v, u, x, t)
−F (ph, vh, u, x, t) + F (ph, vh, u, x, t) − F (ph, vh, uh, x, t)

= Fp (Θ) ep −
1
2
Fpp
(
Θp
)
|ep|2 + Fv

(
Θv

)
ev + Fu

(
Θu
)
eu.

hen the cell error equation is

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ij

(eu)tzh,udx =

∫
Ij

{
Fp (Θ) ep −

1
2
Fpp
(
Θp
) ⏐⏐ep⏐⏐2 + Fv

(
Θv

)
ev + Fu

(
Θu
)
eu

}
zh,udx, (a)∫

Ij

evzh,vdx = H−

j

(
eu , zh,v

)
, (b)∫

Ij

epzh,pdx = H+

j

(
ev , zh,p

)
. (c)

(6.4)

Since the projections in this paper are performed only for the spatial variable, the defined functions eu, ξu, ηu admit
ime derivative according to the regularity of u.

Define αj(t) := Fp(Θ)(xj, t). Taking zh,u = ξu in (6.4a), zh,v = αjξv in (6.4b), zh,p = αjξu in (6.4c), adding the resulting
quations and summing over j from 1 to N , we have∫

D
(ξu)t ξudx +

N∑
j=1

αj

∫
Ij

|ξv|
2 dx = T1 + T2 + T3 + T4,

ith

T1 =

N∑
j=1

∫
Ij

{
Fp (Θ)− αj

}
epξudx −

1
2

∫
D
Fpp
(
Θp
) ⏐⏐ep⏐⏐2 ξudx,

T2 =

N∑
αj
{
H−

j

(
ξu , ξv

)
+ H+

j

(
ξv , ξu

)}
,

j=1

14
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T3 = −

N∑
j=1

αj
{
H−

j

(
ηu , ξv

)
+ H+

j

(
ηv , ξu

)}
,

T4 =

∫
D

{
(ηu)t + Fv

(
Θv

)
ev + Fu

(
Θu
)
eu
}
ξudx +

N∑
j=1

αj

∫
Ij

ηvξvdx,

here the terms Ti, i = 1, 2, 3, 4 will be estimated separately later.
The estimate of T 1. To deal with the nonlinearity of the function F , we we treat it by Taylor expansion and make a
riori assumption that for sufficiently small h, there holds

∥eu∥ ≤ Ch3. (6.5)

his a priori assumption is frequently used in the analysis of nonlinear problems (see e.g. [17,23–25]), and the reason-
bleness of this a priori assumption will be justified later. In fact, if the flux function F is linear with respect to the first
nd the second variables, i.e. F (p, v, u, x, t) = C1p+ C2v+ f (u, x, t) for some constants C1 and C2, one can check that this
priori assumption is not necessary and can be removed. According to the inverse inequality (6.3) and the projection
roperties (6.2) with k ≥ 2, we get

∥ξu∥∞ ≤ Ch−
1
2 ∥ξu∥ ≤ Ch−

1
2 (∥eu∥ + ∥ηu∥) ≤ Ch

5
2 .

ince u and F are smooth enough, we have

sup
1≤j≤N

Fp (Θ)− αj

L∞(Ij×(0,T )) ≤ Ch.

It follows that

|T1| ≤ Ch
ep ∥ξu∥ + Ch

5
2
ep2 .

Next we estimate
ep. Define qh := (vh)x − ph. Note that∫

Ij
(vh)x qhdx = −

∫
Ij

vh (qh)x dx + vh

(
x−

j+ 1
2

)
qh

(
x−

j+ 1
2

)
− vh

(
x+

j− 1
2

)
qh

(
x+

j− 1
2

)
.

aking zh,p = qh in (3.6c), we have∫
Ij

|qh|2 dx = − [vh]j+ 1
2
q−

h,j+ 1
2
.

Summing over j, we get

∥qh∥2
= −

N∑
j=1

[vh]j+ 1
2
q−

h,j+ 1
2

=

N∑
j=1

[v − vh]j+ 1
2
q−

h,j+ 1
2

≤ C ∥ξv − ηv∥Γh ∥qh∥Γh ≤ Ch−1 (
∥ξv∥ + hk+1)

∥qh∥ .

hus we have

∥qh∥ ≤ Ch−1 (
∥ξv∥ + hk+1) .

ince

ep = p − ph = (v − vh)x + (vh)x − ph = (ξv)x − (ηv)x + qh,

t yields thatep ≤ Ch−1 (
∥ξv∥ + hk+1) .

y Young inequality, for small enough h, we have

|T1| ≤
δ

4
∥ξv∥

2
+ C ∥ξu∥

2
+ Ch2k+2.

• The estimate of T 2. For any f , g ∈ V k
h , we have

H+

j (f , g) + H−

j (g, f ) = −f −

j+ 1
2
g−

j+ 1
2

+ f +

j− 1
2
g+

j− 1
2

+ f +

j+ 1
2
g−

j+ 1
2

− f +

j− 1
2
g+

j− 1
2

+ g−

j+ 1
2
f −

j+ 1
2

− g−

j− 1
2
f +

j− 1
2

= f +

j+ 1
2
g−

j+ 1
2

− f +

j− 1
2
g−

j− 1
2
.

According to the periodicity, we get

T2 =

N∑
αj

(
ξ+

v,j+ 1
2
ξ−

u,j+ 1
2

− ξ+

v,j− 1
2
ξ−

u,j− 1
2

)
=

N∑(
αj − αj+1

)
ξ+

v,j+ 1
2
ξ−

u,j+ 1
2
.

j=1 j=1

15
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A

ote that

sup
1≤j≤N

⏐⏐αj − αj+1
⏐⏐ = sup

1≤j≤N

⏐⏐Fp(Θ)(xj, t) − Fp(Θ)(xj+1, t)
⏐⏐ ≤ Ch.

It follows that

|T2| ≤ Ch

⎛⎝ N∑
j=1

⏐⏐⏐⏐ξ+

v,j+ 1
2

⏐⏐⏐⏐2
⎞⎠ 1

2
⎛⎝ N∑

j=1

⏐⏐⏐⏐ξ−

u,j+ 1
2

⏐⏐⏐⏐2
⎞⎠ 1

2

≤ Ch ∥ξv∥Γh ∥ξu∥Γh ≤ C ∥ξv∥ ∥ξu∥ ≤
δ

4
∥ξv∥

2
+ C ∥ξu∥

2 .

The estimate of T 3. By the definition of projections P± (see Section 6.1.1), we have, for any j = 1, 2, . . . ,N , and
zh,u, zh,p ∈ V k

h ,

H−

j

(
ηu(·, t), zh,u

)
= 0 and H+

j

(
ηp(·, t), zh,p

)
= 0.

Since ξu, ξv ∈ V k
h , we have T3 ≡ 0.

• The estimate of T 4. Since u and F are smooth enough with bounded derivatives, we have

|T4| ≤
δ

4
∥ξv∥

2
+ C ∥ξu∥

2
+ Ch2k+2.

Concluding above, we get∫
D
(ξu)t ξudx +

N∑
j=1

αj

∫
Ij

|ξv|
2 dx ≤

3δ
4

∥ξv∥
2
+ C ∥ξu∥

2
+ Ch2k+2.

ince F is uniformly elliptic, i.e., Fp (Θ) ≥ δ, we have αj ≥ δ for each j = 1, . . . ,N . It follows that

1
2

d
dt

∥ξu∥
2
+
δ

4
∥ξv∥

2
≤ C ∥ξu∥

2
+ Ch2k+2.

hen the Gronwall’s inequality tells us that

sup
0≤t≤T

∥ξu(·, t)∥2
+

∫ T

0
∥ξv(·, t)∥2 dt ≤ Ch2k+2.

ccording to the triangle inequality, we finally get the optimal error estimate for the LDG scheme

sup
0≤t≤T

∥u(·, t) − uh(·, t)∥ +

(∫ T

0
∥ux(·, t) − vh(·, t)∥2 dt

) 1
2

≤ Chk+1. (6.6)

Now, to complete the proof, let us follow [17,23–25] to verify the a priori assumption (6.5). In fact, the inequality (6.6)
for k ≥ 2 implies that the a priori assumption (6.5) is true. □

6.3. Proof of Theorem 3.2

Proof. We define e⃗v = (e1v, . . . , e
d
v)

T with

elv := vl − vlh = ξ lv − ηlv, ξ lv := Πvvl − vlh, ηlv := Πvvl − vl, l = 1, . . . , d.

Also, ξu and ηu are defined in a similar way, and we denote

eP :=
[
eml
P

]
d×d =

[
pml

− pml
h

]
d×d .

The projections Πv and Πu are chosen from
{
Π,Π±

}
defined in Section 6.1.1, which will be determined later.

We denote

Θ := (P, v⃗, u, ·) (x, t) and Θh := (Ph, v⃗h, uh, ·) (x, t) .

The cell error equation is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
K
(eu)t zh,udx =

∫
K

{F (Θ) − F (Θh)} zh,u dx, (a)∫
K
e⃗v · z⃗h,vdx = H−

K

(
eu, z⃗h,v

)
, (b)∫ d∑

Aml
K eml

P zh,pdx = H+

K

(
AK e⃗v, zh,p

)
. (c)

(6.7)
K m,l=1

16



Y. Li Journal of Computational and Applied Mathematics 427 (2023) 115158

S

By taking a Taylor expansion, we have

F (Θ) − F (Θh) = F (P, v⃗, u, x, t) − F (Ph, v⃗, u, x, t) + F (Ph, v⃗, u, x, t)
−F (Ph, v⃗h, u, x, t) + F (Ph, v⃗h, u, x, t) − F (Ph, v⃗h, uh, x, t)

=

d∑
m,l=1

eml
P
∂F
∂pml (Θ)−

1
2

(
d∑

m,l=1

eml
P

∂

∂pml

)2

F
(
ΘP
)
+ Fv⃗

(
Θv

)
· e⃗v + Fu

(
Θu
)
eu.

We define

ΛK (t) =
[
Λml

K

]
d×d (t) :=

[
∂F
∂pml (Θ) (xK , t)

]
d×d

.

Taking zh,u = ξu in (6.7a), z⃗h,v = ΛK ξ⃗v in (6.7b), AK = ΛK and zh,p = ξu in (6.7c), adding the resulting equations and
summing over K , we have∫

D
(ξu)t ξudx +

∑
K∈Th

∫
K
ξ⃗ T
v ΛK ξ⃗vdx = T1 + T2 + T3 + T4,

with

T1 =

∑
K∈Th

∫
K

{
d∑

m,l=1

eml
P

(
∂F
∂pml (Θ)−Λml

K

)}
ξudx

−
1
2

∫
D

(
d∑

m,l=1

eml
P

∂

∂pml

)2

F
(
ΘP
)
ξudx,

T2 =

∑
K∈Th

{
H−

K

(
ξu , ΛK ξ⃗v

)
+ H+

K

(
ΛK ξ⃗v , ξu

)}
,

T3 = −

∑
K∈Th

{
H−

K

(
ηu , ΛK ξ⃗v

)
+ H+

K

(
ΛK η⃗v , ξu

)}
,

T4 =

∫
D

{
(ηu)t + Fv⃗

(
Θv

)
· e⃗v + Fu

(
Θu
)
eu
}
ξudx +

∑
K∈Th

∫
K
η⃗ T
v ΛK ξ⃗vdx,

where the terms Ti, i = 1, 2, 3, 4 will be estimated separately later.
• The estimate of T 1. To deal with the nonlinearity of the function F , we we treat it by Taylor expansion and make a
priori assumption that for sufficiently small h, there holds

∥eu∥ ≤ Ch4. (6.8)

This a priori assumption is frequently used in the analysis of nonlinear problems (see e.g. [17,23–25]), and the reason-
ableness of this a priori assumption will be justified later. Similar to the one dimensional case, if the flux function F is
linear with respect to the first and the second variables, this a priori assumption is not necessary and can be removed.
According to the inverse inequality (6.3) and the projection properties (6.2) with k ≥ 3, we get

∥ξu∥∞ ≤ Ch−
d
2 ∥ξu∥ ≤ Ch−1 (∥eu∥ + ∥ηu∥) ≤ Ch3.

ince u and F are smooth enough, we have

sup
K∈Th

 ∂F∂pml (Θ)−Λml
K


L∞(K×(0,T ))

≤ Ch,

for any m, l = 1, . . . , d,. It follows that

|T1| ≤ Ch ∥eP∥ ∥ξu∥ + Ch3
∥eP∥2 . (6.9)

Next we estimate ∥eP∥. Define Qh :=
[
qml
h

]
d×d with qml

h =
∂vlh
∂xm − pml

h . For any AK ∈ Rd×d and zh,p ∈ V k
h , we have∫

K

d∑
m,l=1

Aml
K
∂vlh

∂xm
zh,pdx = −

∫
K
AK v⃗h · ∇zh,pdx +

(
zh,p|intK , AK v⃗h|

intK
· n⃗K

)
∂K .

It yields that∫ d∑
Aml
K qml

h zh,pdx =
(
zh,p|intK , AK

(
v⃗h|

intK
− v⃗+

h

)
· n⃗K

)
∂K =

(
zh,p|intK , AK

(
e⃗+

v − e⃗v|intK
)
· n⃗K

)
∂K .
K m,l=1
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A

et Aml
K = δij and zh,p = qijh. We getqijh2 ≤ C

qijh
Γh

ejvΓh ≤ Ch−1 (ξ jv+ hk+1) qijh .
It follows thateijP =

∂ejv∂xi + qijh

 ≤

∂ξ jv∂xi
+

∂ηjv∂xi
+

qijh ≤ Ch−1 (ξ jv+
ξ iv+ hk+1) .

Thus we have

∥eP∥ ≤ Ch−1 (ξ⃗v+ hk+1) .
According to (6.9), for small enough h, we have

|T1| ≤
δ

5

ξ⃗v2 + C ∥ξu∥
2
+ Ch2k+2.

The estimate of T 2. For any given functions f , g⃗ in V k
h , it follows∑

K∈Th

{
H+

K

(
ΛK g⃗, f

)
+ H−

K

(
f ,ΛK g⃗

)}
= −

∑
K∈Th

∑
eK∈∂K

(
f |intK ,ΛK g⃗|

intK
· n⃗eK

)
eK

+

∑
K∈Th

∑
eK∈∂K

{(
ΛK g⃗ +

· n⃗eK , f |
intK )

eK
+
(
f −,ΛK g⃗|

intK
· n⃗eK

)
eK

}
.

or each fixed edge e, we can find two neighbouring elements R and L such that e = eR = eL = R ∩ L. Without loss of
enerality, we assume that n⃗eL · β⃗ > 0, then R is the ‘‘plus’’ side according to the definition in Section 2.2. Thus we have

−
(
f |intR,ΛRg⃗|

intR
· n⃗eR

)
eR

+
(
ΛRg⃗ +

· n⃗eR , f |
intR)

eR
+
(
f −,ΛRg⃗|

intR
· n⃗eR

)
eR

= −
(
f +,ΛRg⃗ +

· n⃗eR

)
e +

(
ΛRg⃗ +

· n⃗eR , f
+
)
e +

(
f −,ΛRg⃗ +

· n⃗eR

)
e =

(
ΛRg⃗ +

· n⃗eR , f
−
)
e ,

nd

−
(
f |intL,ΛLg⃗|

intL
· n⃗eL

)
eL

+
(
ΛLg⃗ +

· n⃗eL , f |
intL)

eL
+
(
f −,ΛLg⃗|

intL
· n⃗eL

)
eL

= −
(
f −,ΛLg⃗|

−
· n⃗eL

)
e +

(
ΛLg⃗ +

· n⃗eL , f
−
)
e +

(
f −,ΛLg⃗|

−
· n⃗eL

)
e =

(
ΛLg⃗ +

· n⃗eL , f
−
)
e = −

(
ΛLg⃗ +

· n⃗eR , f
−
)
e .

ince F and u are smooth, we have

sup
eR=eL
R,L∈Th

{
sup

m,l=1,...,d

⏐⏐Λml
R −Λml

L

⏐⏐} ≤ Ch.

t follows that⏐⏐⏐⏐⏐⏐
∑
K∈Th

{
H+

K

(
ΛK g⃗, f

)
+ H−

K

(
f ,ΛK g⃗

)}⏐⏐⏐⏐⏐⏐ ≤ Ch
g⃗

Γh
∥f ∥Γh ≤ C

g⃗ ∥f ∥ .

ince ξu and ξ⃗v are in V k
h , we have

|T2| ≤ C
ξ⃗v ∥ξu∥ ≤

δ

5

ξ⃗v2 + C ∥ξu∥
2 .

The estimate of T 3. We estimate T3 in two different cases.
Case 1: For the two-dimensional triangular meshes with Pk elements, we choose

Πu
= Πv

= Π .

ccording to the inverse inequality (6.3), we have

|T3| =

⏐⏐⏐⏐⏐⏐
∑
K∈Th

{(
ΛK η⃗

+

v · n⃗K , ξu|
intK )

∂K +
(
η−

u ,ΛK ξ⃗v|
intK

· n⃗K
)
∂K

}⏐⏐⏐⏐⏐⏐
≤ C ∥η⃗v∥Γh ∥ξu∥Γh + C ∥ηu∥Γh

ξ⃗vΓh ≤
δ

5

ξ⃗v2 + C ∥ξu∥
2
+ Ch2k.

Case 2: For the two-dimensional Cartesian meshes with Q k elements, we choose

Πu
= Π−, Πv

= Π+.
18
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A

f

w

t

7

a
p
r
p
a
p
A
w
a

D

A

s

ccording to the property (6.1) of the projections Π±, we have

H+

K (AK η⃗v, f ) = 0 and H−

K

(
ηu, g⃗

)
= 0,

or any f , g⃗ in V k
h and AK ∈ Rd×d. Since ξu and ΛK ξ⃗v are in V k

h , we get T3 ≡ 0.
• The estimate of T 4. Since u and F are smooth enough with bounded derivatives, we have

|T4| ≤
δ

5

ξ⃗v2 + C ∥ξu∥
2
+ Ch2k+2.

Concluding above, we get∫
D
(ξu)t ξudx +

∑
K∈Th

∫
K
ξ⃗ T
v ΛK ξ⃗vdx ≤

4δ
5

ξ⃗v2 + C ∥ξu∥
2
+ Ch2ρ,

here

ρ :=

{
k, Case 1: triangular meshes with Pk elements;
k + 1, Case 2: Cartesian meshes with Q k elements.

Note that F is uniformly elliptic, i.e.,

FP (Θ) :=

[
∂F
∂pml (Θ)

]
d×d

≥ δId×d.

We have ΛK ≥ δId×d for each K ∈ Th. It follows that

1
2

d
dt

∥ξu∥
2
+
δ

5

ξ⃗v2 ≤ C ∥ξu∥
2
+ Ch2ρ .

Then the Gronwall’s inequality tells us that

sup
0≤t≤T

∥ξu(·, t)∥2
+

∫ T

0

ξ⃗v(·, t)2 dt ≤ Ch2ρ .

According to the triangle inequality, we finally get the error estimate for the LDG scheme

sup
0≤t≤T

∥u(·, t) − uh(·, t)∥ +

(∫ T

0
∥∇u(·, t) − v⃗h(·, t)∥2 dt

) 1
2

≤ Chρ . (6.10)

Now, to complete the proof, let us verify the a priori assumption (6.8). In fact, the assumption in this theorem implies
hat ρ ≥ 4. Thus the inequality (6.10) implies that the a priori assumption (6.8) is true. □

. Conclusion

In this paper, we have developed an LDG method for directly solving fully nonlinear second-order PDEs (1.1) in one
nd multi-dimensional cases, in which the alternating numerical fluxes are used. With the help of local Gauss–Radau
rojection, we can prove the optimal error estimates (O(hk+1)) for the Cartesian meshes with Q k elements. By using the
egular L2-projection, we obtain the sub-optimal error estimates (O(hk)) for the triangular meshes with Pk elements. In
articular, the optimal convergence rates can still be observed in a series numerical experiments when the Pk elements
re used for both Cartesian and triangular meshes. Applications of our numerical schemes to stochastic optimal control
roblems are also discussed. We believe that our LDG method is promising in many other models in mathematical finance.
s is well known, the viscosity solution to the fully nonlinear second-order PDEs is generically only Lipschitz continuous,
ith possibly discontinuous derivatives. Error estimates of the LDG method for such cases are much more difficult to
nalyse and are worthy of future investigation.
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