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1. Introduction

In this paper we consider the Euler’s polygonal line method
for the following nonlinear backward stochastic differential equa-
tions (BSDEs):

dY, = —f(, Y., 2Z)dt+Z dw,, t €[0,T),
v, (1.1)

where the generator f : 2 x RT x R¥ x R**¢ — R¥ satisfies the
monotonicity condition in the first unknown variable y and sub-
quadratic growth in the second unknown variable z. Nonlinear
BSDEs are initially introduced by Pardoux and Peng [1], who
establish an existence and uniqueness result of solutions under
the uniformly Lipschitz assumption. Since then, much effort has
been given to weaken their classical assumption. The interest of
extensions of the classical results is inspired by the fact that,
in many applications, the usual Lipschitz condition fails to be
satisfied.

The monotonicity condition for BSDEs appears for the first
time in a paper by Peng [2], where the generators satisfy the
monotonicity condition in y, which is very helpful to study the BS-
DEs with unbounded stochastic terminal times and super-linearly
growing generators. Pardoux [3] and Pardoux and Rascanu [4]
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solve this kind of BSDEs in the space SZ(R¥) x #H2(RK*?) by
using several operations on the generators, including truncation,
smoothing, passing to the limit and localization. These tech-
niques are also extended to allow the monotonicity coefficients
to be stochastic processes, and the BSDEs are solved in the space
SP(RF) x #E(RF*) with p # 2.

Systems of quadratic BSDEs, whose generators have a
quadratic growth with respect to the variable z, arise naturally in
stochastic optimal control and stochastic differential games, such
as linear quadratic optimal control with random coefficients and
risk-sensitive optimal control. For the scalar case, Kobylanski [5]
gives the existence result under the assumption that the gener-
ators quasi-linearly grow in y. The uniqueness result is derived
under the assumption that the derivatives g—f and g—’; have some
bounded properties. Briand and Hu [6] extend these results. For
the existence of the solution, they use the truncating technique to
allow the generators to be monotone in y and the terminal value
to be unbounded. And they require the generators be convex or
concave with respect to the variable z to get the uniqueness of the
solution. Recently, Hu and Tang [7] solve the multi-dimensional
quadratic BSDEs under the diagonally quadratic condition by
using the BMO martingale theory.

For most nonlinear BSDEs, explicit solutions are not available
in general. It is theoretically and practically appealing to develop
approximating methods for BSDEs. There have been many algo-
rithms for computing solutions of BSDEs. A four step scheme is
developed by Ma, Protter and Yong [8] to approximate forward
backward stochastic partial differential equations (FBSDEs) under
some regularity assumptions. Gobet, Lemor and Warin [9] and
Zhang [10] consider the decoupled FBSDEs with the assumption
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of uniformly Lipschitz continuity in (y, z). Under this assump-
tion, Peng and Xu [11] develop a simple Euler scheme to solve
the one-dimensional BSDEs in a time-discrete way. Richou [12]
and Chassagneux and Richou [13] investigate the numerical ap-
proximation of Markovian BSDEs with generators of quadratic
growth in z and uniform Lipschitz continuity in y. By study-
ing the corresponding BSAEs, Cheridito and Stadje [14] propose
an approximating scheme for scalar BSDEs with sub-quadratic
growth in z, and they give the convergence results without con-
vergence rate. All these results depend strongly on the uniformly
continuous assumption in y. The new features of this paper are
that the generators f are allowed to be non-uniformly Lipschitz
continuous in y and the convergence rates are given.

Lionnet, Reis and Szpruch [15] consider the Markovian FBSDEs
with polynomial growth in y, and prove that some implicit 6-
type schemes and a tamed version of the explicit Euler scheme
are convergent for their FBSDEs. Subsequently, they [16] pro-
pose some modified explicit schemes, which have the same rate
of convergence as standard implicit schemes and the similar
computational cost to the standard explicit scheme.

In this article, we establish the Euler’s polygonal line method
to approximate our non-Markovian BSDEs with monotone gener-
ators, which is different from the schemes in [15,16] designed for
the Markovian FBSDEs. Krylov [17] first used the Euler’s polygonal
line method to prove the solvability for monotone stochastic
differential equations (SDEs), and the proof is very simple and
short among the relevant literature. We shall show that this
method can be developed to solve monotone BSDEs in some
proper spaces, which seems to be new. We first consider the
scalar BSDEs with the generators being non-uniformly Lipschitz
continuous in the first unknown variable y and sub-quadratic in
the second unknown variable z (i.e., the growth in z is dominated
by 1+ |z|>~¢ for a positive number ¢ € (0, 2]). The proper space
to prove the convergence results is S7°(R) x BMO and the conver-
gence speed is at least 7. We also consider the multi-dimensional
BSDEs with the generators being super-linearly growing in the
first unknown variable y and uniformly Lipschitz continuous in
the second unknown variable z. Motivated by the explicit Euler
scheme for SDEs in [18], we show that the approximating solu-
tion (Y", Z") converges to the exact solution (Y, Z) in SH(R¥) x
#H7(R4) with p > 1 and the rate of convergence is 3.

The rest of the paper is organized as follows. In Section 2, we
prepare some basic notations. In Section 3, we state the Euler’s
polygonal line methods and their convergence theorems. The
proofs are given in Section 4.

2. Preliminaries

The norm of a k x d matrix is given by |y| = 4/{y,y), where
V1,¥2) = trace(yry;). Let (82, F, {Zi}i=0, P) be a complete fil-
tered probability space on which a d’-dimensional Wiener process
W = {W;; t > 0} is defined such that {Z};>¢ is the natural
filtration generated by W, augmented by all the P-null sets in ..
The terminal time T is a fixed positive real number. For 0 < T; <
T, <Tandp > 1,

(i) L’;](R") is the space of all .#r,-measurable random vari-
ables X : £2 —> R such that

1
”Xngl;l(]Rd) = {]E [|X|p]}p < oQ;

and E?‘f(R") is the space of all essentially bounded Zr,-
measurable random variables;

(ii) HfTI,TZ](R"Xd) is the space of all predictable processes ¢ :
2 x [T;, T,] — R¥*d such that

1
oo 1
T, 21)°7
xdy = J E 2dt < 00;
”¢”HFTLT2](W o { |:<,/;1 o >i|}
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(iii) Sfrl,rz](Rk) is the space of all adapted cadlag processes ¢ :
£ x [Ty, T,] — R¥ such that

1
P
”¢”5f7r B = {]E[ sup |¢>[|p“ < 00;
1:12

T1<t<T,

and S"T‘i’TZ](R") is the space of all adapted cadlag processes
¢ sucL that

00 ky = su < 0Q;
”(p”S[Tl-Tz](R() T1St§pT2 i

LRk
FRK)

(iv) BMO is the space of all uniformly integrable cadlag martin-
gales M with My = 0 such that

1

2
IMllgmo = (SUD IE[{(M)r — (M), Ie%]HL?o(R)) < 00,

where the supremum is taken over all stopping times t <
T.

For simplicity, we set HJ(R*?) := #f, ;(R*?) and SP(RY) :=
So.r)(RY). For any fixed p € [1,00], q € [1,00), n € Ny, t €[0,T)
andi=1,2,...,n, define

i Fl+1
T; = -T, o(n, t) = LT, o(n, T)=T,
n
and
Dirmky . P k Qirkxdy . 4,4 kxd
S (R ) T S[Tn—ian—H»l](R ), H (R ) ._ ’77_L[Tn—i-.rn—i+l](]R )

Throughout the paper, by saying that a vector-valued or
matrix-valued function belongs to a function space, we mean
all the components belong to that space. By C > 0, we denote
a generic constant, which in particular does not depend on the
number of meshes n and possibly changes from line to line. For
simplicity of notations, we omit the argument w of stochastic
processes if there is no danger of confusion.

3. Euler approximation and the convergence results
3.1. Sub-quadratic growth in z

In this section we state our main results. We first consider the
scalar BSDEs with generators being sub-quadratic growing in z
and non-uniformly Lipschitz continuous in y, such as f(t, y, z) .=

—sign(y)V/ 1y + |z|%. Let k = 1. We make the following assump-
tions:
(Z1) (Monotonicity) There exists a constant K > 0 such that

2<_y1 _.VZsf(t’th) _f(f’}’z’z)) <K |.V1 _y2|27 (31)

for any (w, t,y1,¥2.2) € 2 x [0, T] x (R)* x RY;
(Z2) (Continuity in z) There exist a constant F > 0 and a
non-decreasing function p : R, + R, such that

ft.y,z1) = f(t.y.2)| = F (A + p (D) + |z1] + |22]) 121 — 22 ,
(3.2)

for any (w, t,y,21,22) € 2 x [0, T] x R x (Rd)z;
(Z3) (Growth condition) There exist four constants « > 0, 8 > 0,
y > 0and ¢ € (0, 2] such that

f(t.y.2)] <o+ Blyl+ g 2>, (33)

for any (w, t,y,z) € 2 x [0, T] x R x RY;
(Z4) The map y +— f (t,y, z) is continuous from R to R for each
(w,t,z) € 2 x[0,T] x RY;
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(25) The terminal value £ is in LP°(R).

Since the BSDEs satisfy the preceding assumptions, the solvability
is obtained from [6, Corollary 4] and [19, Theorem 2.1] as follows.

Lemma 3.1. Let Assumptions (Z1)-(Z5) be satisfied. Then BSDE
(1.1) admits a unique solution (Y, Z o W) in SP°(R) x H%(Rd).

The classical proof of the above result involves several techni-
cal methods, including truncating, smoothing, passing to a limit
on the generators and localization technique. In the next section,
we will use the Euler approximation to prove the above result,
which is very simple and seems to be novel.

Before giving the approximation equations, let us first consider
a simple class of BSDEs with the generators f being independent
with y, i.e.,

f=Ff(t2):8 x [O,T]de—>R.

The solvability of such BSDEs can be found in Hu and Tang
[7, Lemma 2.1] as follows, which is the basic tool to design our
approximating scheme.

Lemma 3.2. Assume that § € £°(R) and there exist two positive
constants o, y such that

Fo|<a+= |z\2 IFs.20) —f sz <@+ |z1| + 1z |21 — 22,

for all (w, t,z,21,25) € 2 x [0, T] x (RY)3. Then the BSDE (f, T, &)
has a solution (Y, Z o W) in S°(R) x H2(R?) such that

”Y”S.?C(R) <ol + ”%—”S?"(R)'

Now we give the Euler’s polygonal line method. Consider the
following BSDE:

Y =§+/Tf (s, E7*[€],2") ds —/Tzs"-ldws, t e [Toq,T].
t ‘
(3.4)
The generator of BSDE (3.4) is
P ls.2) =f (s, E7* [£].2),
which is independent with y. Note that |z|>~® < 1+ |z|%, we have
" 65.2)] < kB I8 et 5 12777 < @t S4B 1l a5 12

One can verify that f™! satisfies all the conditions in Lemma 3.2
with the coefficients:

- Y .
"' =a+ E + B ”g“L;O(R), Vn'] =Y.

By Lemma 3.2, BSDE (3.4) has a solution (Y™!, Z®1) in $°!(R) x
H>1(RY) such that

y\ T BT
||Yn’]||SOCTI(R) < (a + E) E —+ (1 + T ||§||L$°(R)

Next we consider the following BSDE:

Tn—1 T
Y2 =yt +/t £ (s8] 2oty ds - /t ZM dw,
t € [Th—2, Taza]. (3.5)
The generator of BSDE (3.5) is
s, y,z) = f (s, EZs I:Y.l’?nil] ,z) ,
which does not depend on y. Note that

252 < ot Lt BV gy + S 1P
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Thus f™? satisfies all the conditions in Lemma 3.2 with

T =at = +ﬂ [Y" | sty: 72 =

By Lemma 3.2, BSDE (3.5) has a solution (Y™2, Z™2) € §%2(R) x
#%2(RY) such that

T T
IVl < (@ + 5) +(1+ﬂ )”Y"'lﬂsw.um)-

Inductively in a backward way, one can use Lemma 3.2 to
show that for eachi =1, ..., n, the following BSDE:

n,i n,i—1 Tn—it1 F n,i—1 i
g Ji— s Ji— n,i
Yt - YTn—H] + l f (S’ E I:YTn—i+1] ’ ZS ) ds
Tn—it1 }
- / an’l dWs, t e [T, Tn—ipa],
t

has a solution (Y™, Z™) in 8°%/(R) x H>{(RY), where Y/"° = &.
The generator is

n,i Fs
s, y.2) = f(s E [an m] 7—)
with the parameters

_ —n,i

an,i = + % + ﬂ ”Y'Lli] “SOC,I*](]R) ’ ﬁ = O’ 7”‘1 = y'

Thus

) y\ T BT i
I oy = o 5) 4 (145 ) 1 i 09

We define for t € [0, T],

n
n,i
=¥
i=1

and

XTpeisTamir) T & - Xie=T)

n

. n,i n,1
Ztn T Zzt : X[Tn—ian—H]) + ZT
i=1

Thus we know that (Y", Z") is in S2°(R) x #2(R?) and is a solution
of the following backward equation:

o(n,1) @(n,1)
n n
4 _Y(nt)—i-/ FEZ V0] Z )ds—/ Z!' dW,
t

(3.7)

© X{t=T}-

te[0,T],

where Y[ = &.

We can prove that the approximated solution {(Y",Z")}n>1
defined by (3.7) is a Cauchy sequence, which gives the existence
result of solution and the error estimate as follows.

Theorem 3.1. Let Assumptions (Z1)—(Z5) be satisfied. Then {(Y",
Z")}n=1 is a Cauchy sequence in Sf°(R) x BMO, which converges to
the unique solution (Y, Z o W) of BSDE (1.1). Moreover, we have

C

r
n4
where C is a constant independent of n.

”Yn Y||S°O(R+||Zn ZH ’

BMO

3.2. Super-linearly growth in y

Next we consider the Euler approximation for the BSDEs with
generators being super-linearly growing in y and uniformly Lip-
schitz continuous in z, such as f(t,y, z) .= —y™ + sin(z) with m
being any positive odd integer. We make the following assump-
tions:



Y. Li and S. Tang

(Y1) (Monotonicity) There exist two constants K > 0and H > 0

such that

201 =y, f (t.y1,2) = F (t,92,2)) <Kly1 —y2l*,  (38)
and

W.f(t.y.0) <H(1+ ), (3.9)

for any (w, t,,y1,¥2,2) € 2 x [0,T] x (R¥)” x R&x¢;

(Y2) (Continuity in z) There exists a constant L > 0 such that
Ift,y,z0) = f(t,y, )| <Llz1 — 2], (3.10)

for any (o, t,y,21,22) € 2 x [0, T] x R¥ x (kad)Z'
(Y3) (Continuity in y) There exist two constants /] > 0 and [ > 0
such that

If (t.y1,2) —f (€, y2. 2 <] (1+ yal' + 2l') vy — yal,

(3.11)
for any (w, t,y1,y2,2) € 2 x [0, T] x (R")2 x Rkxd,
(Y4) There exist a constant M > 0 such that
If (£,0,0)| <M, (3.12)

for any (w, t) € £2 x [0, T].
(Y5) The terminal value & € £° (R¥) for some po > 1.

Under the above assumptions, we know there exists a positive
constant C such that

If (t,y, 2 <C(1+ "+ Iz]) .

For this kind of BSDEs, we have the following uniqueness and
existence of solution from [20, Theorem 4.2].

(3.13)

Lemma 3.3. Let the assumptions (Y1)-(Y5) be satisfied. Then
BSDE (1.1) admits a unique solution (Y, Z) € SF°(R¥) x #5°(RK*?),

Motivated by Sabanis [18], we shall give the approximation
scheme when the generators are super-linearly growing in y.
To do this, we introduce the approximate generators {f"};>1 to
calculate the approximate solutions {(Y", Z")};>1. For n € N, and

€ (0, 1), define

=y

———f(£,,0).

1+n=«|y|

We observe that the value of « is closely related to the conver-
gence rate of {f"},>1. We shall leave « to be determined later in
an optimal way. Note that

fn(t,y,Z) ::f(tvyaz)_

f(t,y,0)
1+ny

Further, we observe that for any (w, t, y, z,z1,22) € £2 x [0, T] x
Rk x (kad)3'

"t y,0)=f(ty,2) —f(t,y,0)+

(i) for the constants C and L in (3.10) and (3.13), we have
" (t.y,2)| < Cn* A+ IyD) +Llzl;
(ii) for the constant L in (3.10), we have
" (t.y.21) = " (t.y, )| < Llz1 — 22
(iii) for the constant H in (3.9), we have

(y.f" t,y,0) <H(1+1yP).

Now we give the Euler’s polygonal line method. Consider the
following BSDE:

Systems & Control Letters 153 (2021) 104952

Y =$+[Tf” (s,E™ [5],Zf*l)ds—/TZS”*1dWs, t €Ty, T].
t [ (3.14)

The generator of BSDE (3.14) is

il s, 2) =f"(s. ET* [£].2),

which does not depend on y and is uniformly Lipschitz continu-
ous in z. Moreover, we have

T
E [/ ™1 (s, 0)]™ ds:| <00
T

due to the linear growth property of f™(t, -, 0). Thus BSDE (3.14)
has a unique solution (Y"1, Z™1) in SPo-1(RK)x #Po- 1(R¥*9) (see [21,
Theorem 5.1]).

In a similar way, we show that the following BSDE has a
unique solution (Y™2, Z™2) in SPo-2(RK) x #Po-2(RK*d):

Th—1
P2 = yil 4 / (s m vl ] ze?) ds
t
Th-1
- / an,z dws, te[Th2, Taa].
t

Inductively in a backward way, it follows that for each i =
1, ..., n, the following BSDE

Th—it1
ni _ yni-1 n F n,i—1 n,i
Yo = YTn—Hl +/; f (S’ E™ [YTn—i+1] ’ ZS )dS
Tooiv1
- f ng aws, t € [T, Toia],
t
has a unique solution (Y™, Z") in SPoO-{(IRK) x #Po-i(Rk*4) where

Y0 =g
We define

n
Ytn = Z th : X[Tn—i»Tn—iJrl)(t) +£&- X{T)(t)
i=1
and
n
Zl= Y 2 X () + 28 ().
i=1

Thus, (Y",Z") lies in SP°(R¥) x #7°(R¥*?) and is the unique
solution of the following BSDE

T T
Y = g+/ ST B [YVng] 20 ds—/ Zldw,, te[0,T]
t

t

(3.15)

For the approximated solution {(Y", Z")},>1 defined by (3.15),
we have the following convergence result.

Theorem 3.2. Let Assumptions (Y1)-(Y5) be satisfied with py >

2(21 4 1). Then for any p € [1, %), we have
C

<
P = i
/HTURkXd) «\/ﬁ

where C is a positive constant independent with n.

”Yn - Y”sg(Rk) + Hzn - Z”

Remark 3.1. For the special case that the generator f := f(t, y)
is independent with z, we could give an explicit formula for the
approximation solution

.
Y! = E% [s + /t (s B «T(n,s)])dS]
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in an inductively backward way, which has the half-order accu-

n C
racy IV" = Yl gpgay < G-

4. Proofs
4.1. Some auxiliary results

The following lemma is an extended dominated convergence
theorem (see Yan and Liu [22, page 130]).

Lemma 4.1. Let {X,}n,en be a series of random variables and
{Up}nen a series of integrable non-negative random variables. If

(i) 1Xn| < Uy and X, — X as.;
(ii) There is an integrable random variable U such that U, — U
as, and (U, — [U.

Then we have [ |X, —X| —> 0. In particular, we have [ X, —
X

From the dominated convergence theorem and the BDG in-
equality, we have the following lemma.

Lemma 4.2. Forp > 2, if (Y,Z) € SH(R¥) x #E(R¥*4), then

t
{f Ys[P™2 (Y, ZedW) OEIET}
0

is a martingale.

The following lemma plays a crucial role in the proof of
Theorem 3.1, and can be found in Hu and Tang [7, Lemma A.4].

Lemma 4.3. For T(N > 0, there are two positive constants c¢; and ¢,
depending only on K such that for any BMO martingale M, we have

1 IMlgmoeey < Mmooy < €2 IIM [l gmoge) »

for any one-dimensional BMO martmgale N with |[N|gmor) < K
where M := M — (M, N) and dP:=¢ (N)0 dP.

The following lemma is used to prove Theorem 3.2, and is
available in Gydngy and Krylov [23, Lemma 3.2].

Lemma 4.4. LetT € (0, oo) [ = {ftlo<t<r and g =
be non-negative continuous .%
constant ¢ > 0,

E [ffXgoSC] <E [nggoﬁc] )

for any stopping time t < T. Then, for any stopping time o < T and
€ (0, 1), we have

2 —
]E|:sup fty] < y]E[ sup gty]
0<t<o 1—y lozt=o

4.2. The proof of Theorem 3.1 .

{8t)o<t<r
7 -adapted processes such that, for any

The proof consists of the following four steps.
Step 1: We give a prior estimation for sup,.y [IIY”IIS;O(R)}.

Fix n € N. According to (3.6), forany i =1, 2, ..., n we have

. T T i
1Y giey < (0 + L)~ + (1 + ’%) (R
Y\ T BT YT
< (a-i-i)g-i-(]“r*) |:<a+2>n
BT .
+ (1 + T) H y™! 2Hso(},i2(R)]
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v\ T BT BT |ynie
S OS5 MG L B

i—1

5(a+;)2[1+<1+’?>+-~-+<1+’3§> }

T i
+ (1 + %) T

If B =0, it is obvious that

[ iy = (4 5) T+ Ul cogey = M.

If B # 0, we have
(1 ﬁT) :|
n

i LY
IV iy < (4 5) 7 [
/-‘3
( — ) 151 coogw)
< (o [(H) - 1] + T gl ey
B
1 _
A )(ef” 1)+ 1§l ey = M.
Set M := max{My, M}. Then we obtain that

sup { V"] gy | < M-

IA

Step 2: We prove that {Z"oW},>1 € BMO are uniformly bounded,
which leads to the fact that the local error tends to zero uniformly
in [0, T] x £2 when n goes to oo. To do this, we define

o) =y lexp(ylyD) — Iyl — 11,
One can verify that

yER.

d'y) =y 'lexp(rlyl) — 1lsgn(y), ¢"(y) = exp(yyl),
") -yl =1

For any bounded stopping time 7, using Itd’s formula to com-
pute ¢(Y]'), we have

T
oorny+ geo | [ oomigas)

T
E7" [p(§)] + E7 [/ ¢' (Y (5. 7 [V ] ’an)ds]

IA

5. T . Yy Y on2
SEl ) + E 1Y) (a+5+ﬂm+5|zs| )ds .
It holds that

1 T
s+ 1 [ / |z;|2ds] < 9UIE N c0)

T
+E7T [ / ' (Ys)l (a + % + ﬁM) ds}
NZ
< QM)+ ¢ 00 (o + 5+ M) T o= 5 < 0.

Thus, we have

sup [|IZ" o Wlguwo < N.

neN

According to (3.7), we have

T T
:g+/ . E7 Vel 2 )ds—/ Zldw;, tel0,T]. (4.1)
t t
Define the local error

pl=E7 [Y(’;(n’t)] -Y!, telo,T].
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Then BSDE (4.1) reads

[d?: = —f (e, Y] +pp z!)dt + 2 dW,, te[0,T); (42)
no= &
Since Z" o W is a BMO martingale, we have
o(n.t)
p! = —E7 [ / fEZ Y], 20) ds] ., telo,T].
t
(4.3)

It yields that

. @(n,t) .
o= [ [ 6 )20 ]

T ) p(n,t) _
(a+ﬂM)E+§1E?f [/ |zn? gds]
t

T p(n,t) )
< (@+pM)- + LEZ ( / |z?| d5>
n 2 ¢

< (a+ ﬂm)% n g(N2 1) (%)2 =5, (4.4)

A

IA

¢
1-3

(¢ (n,t) — t)i}

Note that {8,}nen is a sequence of deterministic non-negative
numbers with 8, < Cn™z.

Step 3: We prove that {(Y", Z" o W)}nen is a Cauchy sequence in
S2°(R) x BMO. Define y(t) := e2K(T=t) For each n, m € N, using

It6’s formula, we have

T
VoY - ym +f Wizt — 2" ds

+2/ Ys(Y,

- / YY" — Y™ [F(s, Y"1 Z0) — f(s. Y™+ p", ZM)] ds

—ZM)dW;

T
—2K | Y — Y™ ds
T T
_2 / WY — Y [F(s. Y7+ pI 27 — F(s, Y0 + Pl 2] ds
T

T
—2K [ w|Y" — Y™ *ds
T

T
+2/ s [V +p3) = (V" + )] [FGs, Y&+ D5, Z)

—f(s, Y +pi". ZM)] ds

—2/ ws(pf — P [f(s, Y + 3, Z0) — f(s, Y + pit, Z)] ds,

where t is an arbitrary bounded stopping time. Furthermore, we
have

T
wf|Yf—Y:1|2+f Wilzr — 20 ds

+2/ WYY,

T
< 1</ w(vs”+p§)—(vs'"+p;")|2ds—21</ IV — Y2 ds

ZM — ZM)dW;

4

+4/ A ps|(a+ﬁ1vl+ :

+2/ ws(Y,

T
521</ ws|p?—p;”|2ds+4/ Y+ [p)
T T

+X |z""| )ds

M) [FGs, Y+ P2 20 — s, Y + Pl ZM)] ds

Systems & Control Letters 153 (2021) 104952
x (a oM+ YLy Z|Z;“|2) ds
2 2
T
+2f YY) — Y [f(s, YO+, Z0) — (s, Y] + p, ZM)] ds
T

< AKT(8? + 62) + 4T (a + BM + g) (8 + 8m) + 27 (50 + Sm)
T
x / 1z P ds
T
T
12 f YoV — Y [F(s. Y2 4 pl 27— F(s, Y0 + Pl ZM)] ds.
T

For any fixed n, m € N, we define L™ = ((L™™);, ..., (L™™),
. (L’;’m)d)T as follows:

Zir-l%lylrl(s))

if (Z0 = 2" # 0,
if (z0 —zm) =0,

fs, Y2 +p2, ZP™(s)) — f(s, Y2 + pP,
(LM =

2z —Z8)
0

where ZM™(s) == ((Z™h, ..., (@M1, (20, ZNi1s - -5 (Z0)a) -

Then we have

[ Y +p5,Z0) = f(s, Y +pg, Z) = (2 = Z", L3™).

By virtue of (3.2), we get
IL™ < C(1 4 p(M) + 1Z{'| + IZ5"]).

Thus L™™ o W € BMO. Moreover, there is a uniform bound for
{L™™ o W}, m=1 in BMO,

sup [[IL™™ o Wlgmo <K,

n,meN

where K := CT[1 + p(M)] + 2CN. Thus

t
{W{”" =W; —/ LPMds,0 <t < T}
0

is a standard Brownian Motion with respect to the equivalent
probability measure P™™ defined by
dP™™ = g(L™™M o W)} dP.

It follows that

T
PolY" — Y2 1 wo/ Z0 — 7P ds
T

+2/ Ys(Y,

< AKT(8% + 62) + 4T(a + M + %)(5,1 +6m)

_ Zm) dWsn,m

T
2950 + ) f 12 ds.
T

Denote by ]E,f} & [ - ] the expectation operator with respect to the
probability measure P™™, conditioned on .%;. Thus

ol = Y7+ voe Ty | / -2 o]
< 4KT(82 + 82) + 4T(a + BM + —)(6,, + 8m)

+2y(8n + 8m)Ei [/ izm? ds]
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This implies that
[y" =" ?9-}’°(R) +[zm o W™ =2 o W fyyoenmy
<4KTe™ (57 + 87) +2¢°7[2 (a + pM + 1)
Y127 oW ey |8 + ).

By Lemma 4.3, there are two constants ¢; > O and c; > 0
depending only on K such that

” yr—y" ”28?0(]}2{)

+ 12" o W —Z™ o Wilgyo)

< AKTe*T(82 + §2) + 2% [ZT (a + BM + g)
+y 12" W Ryogenm) |8 + 6m)

< AKTe?T(52 4 62) + 2¢2KT [2T (a + BM + %)
+yczN2](8n + 8m). (4.5)

Thus (Y",Z" o W),ey is a Cauchy sequence in S°(R) x BMO.
There exists (Y,Z o W) € S°(R) x BMO such that

C

1
IY" = Ylispem + 12" oW —Z o Wllgmo < 87 < 0z

Step 4: Finally, we take limits of Eq. (4.2). For any t € [0, T], we
have

T T
- (E + f(ss Ys’Zs)dS _/ Z dWs)
t t
T
— Y-+ / [F(5. Y0+ D' Z0) — 5. Yo, 22)] di
t

T
+f (2 — 2 aw,
t

which leads to that

(E-i—/ f(s, Y5, Zs)ds /rTZSdWS>H

<Y™ = Yllseoqm) +IE[/ F(s, YI' + P, 20 — f(s, Ys, Z)| ds]
0

E|:sup

0<t<T

It is easy to see that the first term and the third term in the
right-hand side of (4.6) tend to zero when n goes to oo because
of the conclusions in step 3. For the third term, we can extract
subsequences of (Y")yen, (P")neny and (Z"),en (for the sake of
simplicity of notations, we still denote these subsequences by
(Y")nens (P"nen and (Z™),en respectively) such that

lim Y'=Y,, limZz'=2, limp}!=0, as. a.e.
n—oo n—oo n—oo

We define

= If(sv ysn +pls1’an) _f(sv YSv ZS)'

It turns out that lim,_,« F{' = 0, a.s., a.e. since f is continuous in
the last two arguments (y, z). Note that

IFS| < If(s, Y" +p5, ")I + f(s, Ys,Z)I
<o+ = +/3M+ |z"|2+ +—

+,3||Y||$§°(R) + §|Zs| <Gy,
with

14
Gl =20+ y + M + Y sem) + S (126 +121°).
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Define
Ge =2 +y + BM + ||Y |l spo(m) + 7122,
We have

(i) IF' < G}, as., ae,;
(ii) For any n € N, G" is integrable with respect to dP ® dt;
lim,_, o GI = G;, as., a.e.;

(iii) lim,_, o E [ e ds] —E [ e ds].

According to Lemma 4.1, we know that

limIE[/ If(s, Y} +pi,Zh) — f(s,Ys,Zs)IdS]

n—oo

:IE[/ lim Fs”ds:| =
0 n—oo

which implies that

T
(g+ (s, YS,ZS)ds—/ stWs>H—0.

Therefore, we have

E[sup

0<t<T

T T
Y =&+ f(s, Ys, Zs)ds — / Zs dW.
t t

The existence of solution is proved.

The uniqueness of solution is an immediate consequence of (4.5).
In fact, it is sufficient to let (Y", Z" o W) be the solution (Y, Zo W)
if n is even and be another solution (Y, Z’ o W) if n is odd with
p" = 0. The proof is complete. O

Remark 4.1. According to (4.4), we see that the sub-quadratic
assumption ¢ > 0 is essential to prove that the local error p"
tends to zero uniformly in [0, T] x £2 when n goes to oco.

4.3. The proof of Theorem 3.2

The proof consists of the following three steps.
Step 1: We give an a priori estimate for SupneN{Supogth

E[|yr"]}.

Fix n € N. Due to po > 2(2/+ 1) > 2, we can use Itd’s formula

to get that
/ Y2 P2z 2 ds

= |&|P0 +Po/ |Ys“|p°_2 (Yo s, B [V ) Z0) ds

nPo
Y7

—Po/ Y] PO (Y2, Z0dW)

Since (Y™, Z") € Sp°(R¥) x

that the process

t
{/ [YIPO2 (I, ZMW,), 0 <t < T}
0

HO(RF*?), using Lemma 4.2, we know

is a martingale. Thus, we have

U |yrPo?zn 2 ds]

= E7[lg1"] +poE¢U PR f s B [V ] 20)

|Y“ |p0 PO(PO
t

—f(s, E” [Y”(n 9] 0)) ds]

T
+poE”" [ / YO Yy o] S5 BT [V 0] OO ds]
t
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T 2
+poE7 [ / YO B [YE =Yg ] F1 (s B [V ] 0) ds]
t

T
< EZt [|§|p0] +pOE.% |:[ |Y5n|P0—2L|YS”||ZS”|dSi|
ey ——

o(n,
ol |Ys“|p°*2E%[ [ 1 V] 2|
t s
< |, E5 [V 0] 0] ds:|.

By Young's inequality, we have
-1 T
4 Rl D 2 g [ / |Ys”|"°’2|2£|2ds]
t
> > T ) LZ
< B [l +po“*3”[/ v ( &
[ ] t : po—1°7°
r )4
+CE”t [ /[ (1+ Y +E7 [\y;(nv3)| °])ds]
T 5 @(n,s) 5
+C]Ey‘[/ |ys”|”°‘/ {nz“(1+\1ﬁs[yg(n,s)]|)
t s

polpo — 1)
+%E%[|Z,” |2] } drds]

|Ytn‘P0

2, Po—
4 s

)]

—1 T
< E7t[510] + pio(pz g [/ \Y”l"“’zlzs”lzds]

—1 @(n.s)
pO(pO ) |:/ |Yn|P0 ZEys |:/ |Zrn|2dri| dS]
+C (1 ET [ / T+ +ET [|Y£(n,s>\"°]>ds], (47)
t

for all t € [0, T].
We set

2 —1<0. (4.8)
Temporarily, we let po = 2. It follows

%Eg U |Z"|2dsi| < E7[1£)2] + U / |zn? drds]
+CE Ut <1+|Y”| + Y] )ds].

Integrating by part, we have

T @(n,s) ) T T ) T 3
/ / |z7| drdsf/ / |z drds:f (s—1t)|z8|" ds
t N t N t

T
<T/}2Vw
t
It yields that

T T
#t [/ |Zs"|2dsi| < CE [|¢[2]+CE™t [/ (1 FIYPR 4 |Y(’;(nvs)\2) dsi|4
t t
(4.9)
Now we let pg > 2(2] + 1). According to (4.7), we have

T
E[1¥] < c+C/ E[V ]+ EIY g™ ]) ds
t

T
< C—l—C/ sup IE[|yr"|Po] ds
t

s<r<T
According to the backward Gronwall’s inequality, there is a con-
stant My > 0 such that

sup sup E[|Y]|°] < My.

neN 0<t<T
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Step 2: We prove that {Y"},>1 converges to Y in SP(R).
Setp; == and note that p; > 2. By Itd’s formula, we obtain

Zl+1
Y Y 1(P12* 1)‘Y[n Y Pz~ z P de
Y = Y PRV Yo (20— Z0)dW)
= Pl =YY = Y S BT [YE 0] 20 — F(E Yo, Z2)) de
= plY =Y Y = Y G ET[YE 0] 2 — BTV ] Z0) de

Y = Y PRy
Y =Y P
+plY] =Y P

= Yo U ET Vg0 Z) = f(6 BT [V 0], Z2))dt
=Y S BT [V)o] . Z f(t Z,))dt

2Yr - Y f(t, Y, Z) - fe, Yt,Z[))dt.

According to the Lipschitz condition and monotonicity condition,
we have

-1
—d|Y" — Y, |" + wa — Y, "2t — Z ) dt

P Y] = Ve PRV = YL (20— Z)aw)

L2
S = mz) dt

smW}‘—YA"“Z(“ \z" — zr|2+

HpalY = Yl ETO[Y ] z[) — (e 7 Y0, o] 20| dt
+pa Y] = Y P BTV 0] 20 — f(e Y] 2] de
+I¥|Ytn —Y,|"dt.
It holds that
—d|Y! — Y, < 7p71(p14_ L) IY! — Y P12z — Z, ) dt
—plY! = Y PRV — Y, (2 — Z,)dW)
+CIY! — Y, [Prdt
HCU (L BT [V 0] Z0) — (L BTC[YE, ] 201 de
HCU (L BT [V o] Z0) — F(6. Y2, 2 de. (4.10)
Define

¢(t) =exp[C(t —T)], te]0,T],

where C > 0 is the constant in (4.10). Note that e= < ¢(t) < 1.
We get

—d(@(OY! = YelP') = —Co(O)Y] — Y|P dt — p(t)d|Y] — Y|
< 7"12’1 “Diyr vz -z de
—p1d(O)Y] = Vel 2V = Y, (20— Ze) dW)
HC M BT [Vl 0] 200 = F BT [V 0] 20] de
+Cf( BT YR 0] 20 — F(6 Y 2P de. (4.11)
Since (Y" —Y,Z" —Z) € SP°(R¥) x #{°(RK*?), Lemma 4.2 tells
us that

{/ (P |Yn Y|p1 2( Ys»(z _Zs)dWs> OStST}
is a martingale. Then for any stopping time t < T, we have

E[¢(0)|Y! — Y [P'] < C[M; (n, p1) + Ms (n, )],
where

e[ [

e 27 131"

T
-E /

O (1 B [Vl
Cn—am]E[/ |IE 7t Yg(n ) 1D1 (1+|IE‘% [YgZ(n [)]|I+1) dti|

Cnem / (14 B[ Vo[ ]) de < e,
0

BT V0] 20 = F6 BT [V 0], 20 df]

(6 BT Y] 0 de

IA

IA
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and

T
MZ(n! pl) =E [/ |f(ts Egt [ g(nyt)] 7Zt) _f(tﬂ Yn’Zt)|p1 dt:l
0
P1
<E / [ (1+ B [0 ]+ V21 17 [y — w011}

=8 / 1 (7 [ ]| +|an|lm)

(1
(
x [EZt [ / (M) (s, EZ{ Y0, ],Zs")ds]
X
1

p1

dt

p1

(nt) 7]
(1 1Y)nl) +1201] ds )dt

(

< Cn(a—np]/ (14 [[¥20/" ] + £ ] e

pi+1)

T T 5 -2
+CE / (44:% [/ || ds]) dt
o \N ¢

<@ o7

(+1p
<y 7

in which (4.9) is used. By Lemma 4.4, we get that for any y €
(0, 1),

o

0<t<T

)Y — m””} < C(n™ 4@ =Ty (4.12)

In view of (4.8), the parameter « is optimally chosen to be 1.

2
Then, for any p € [1, 572), we have

b
s 2
(]E sup |Y!' —
0<t<T

) =5

Step 3: We prove that {Z"},~; converges to Z in #}(R).
Taking p; = 2 in (4.11), we have
o=CT (T

5 |z — Z,|” dt

T
< —2/ () (Y] — Y, (2 — Z,)dW,)
0
T
+C/o (6 BT Vo] 20 = (6 BT [V 0] 201 de

T
+ C/ (6 EZ (Y] Z0) — F(E Y, Z0) dt.
0

Ifp € [2, 5727), we get

T 5
E (/ |Zt”—Zt|2dt>
0
/«b(t =Y, (

e [/ (e B [Yyn]. 20) = f(E,

)4
2

< CE

Z! — Z,)dW,)

E7 [ Yy Zt)|pdt}

+ CE U IF(e 70 (Y0, 0] 20) — fe. Y 20| dt]

0

p
T i
<CE ( f N ARVA —zr|2dt) + C[Mi(n, p) + Ma(n, p)]
0
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p
c n p, 1 ! n 2 ’ -B
S]E 75up |Yt_yt| +E |Zt —Zt| dt +Cn 2,
0

0<t<T

which yields that

, N c
E VA A i s < —.
(fo %~ 4l ) ~

If p € [1, 2), we can use Jensen’s inequality to get

(o) ] el e (5

This completes the proof. O
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