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Abstract. 3D reconstruction of novel categories based on few-shot
learning is appealing in real-world applications and attracts increasing
research interests. Previous approaches mainly focus on how to design
shape prior models for different categories. Their performance on unseen
categories is not very competitive. In this paper, we present a Memory
Prior Contrastive Network (MPCN) that can store shape prior knowl-
edge in a few-shot learning based 3D reconstruction framework. With
the shape memory, a multi-head attention module is proposed to capture
different parts of a candidate shape prior and fuse these parts together
to guide 3D reconstruction of novel categories. Besides, we introduce
a 3D-aware contrastive learning method, which can not only comple-
ment the retrieval accuracy of memory network, but also better organize
image features for downstream tasks. Compared with previous few-shot
3D reconstruction methods, MPCN can handle the inter-class variabil-
ity without category annotations. Experimental results on a benchmark
synthetic dataset and the Pascal3D+ real-world dataset show that our
model outperforms the current state-of-the-art methods significantly.
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1 Introduction

Reconstructing 3D shapes from RGB images is valuable in many real-world appli-
cations such as autonomous driving, virtual reality, CAD and robotics. Tradi-
tional methods for 3D reconstruction such as Structure From Motion (SFM) [29]
and Simultaneous Localization and Mapping (SLAM) [2] often require signifi-
cant efforts in data acquisition. For example, a large number of images need to
be captured and the camera parameters need to be calibrated, which limit the
applications of these traditional methods.
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Fig. 1. (a) Novel category 3D reconstruction results on category-specific method and
our method combination of prior. (b) The mIoU(%) of current methods against the
number of shots. Our MPCN outperforms the SOTA approaches with different shot.

In recent years, 3D reconstruction from single image based on deep neural
networks attracts great research interests. However, previous methods of single-
view 3D reconstruction are mostly category-specific [8,42]. Therefore, they only
perform well in the specific training categories. These methods also require a
large number of labeled training images, which is time consuming and costly to
obtain.

Notably, Tatarchenko et al. [31] shows that single-view 3D reconstruction of
specific categories is closely related to image recognition for shape matching.
Several simple image retrieval baseline methods can even outperform state-of-
the-art 3D reconstruction methods.

In this paper, we propose a novel category-agnostic model for single-view
3D reconstruction in the few-shot learning settings. In our method, the network
parameters are first optimized on some specific object categories. Then given
novel categories, the model can be quickly transferred to 3D reconstruction of
these categories based on few-shot learning techniques.

To the best of our knowledge, there are mainly three previous works focus
on unseen category 3D reconstruction. Wallace et al. [34] present a network
for single-view 3D reconstruction with additional shape prior of object cate-
gories. However, their shape prior model cannot catch the diversity of shapes
within an object category. The authors of Compositional Global Class Embed-
dings (CGCE) [22] adopt a solution to optimize the shape prior codebooks for
the reconstruction of unseen classes. Their model depends on finetuning with
additional codebooks, which makes the training process complicated and makes
the performance unstable. Pose Adaptive Dual Mixup (PADMix) [6] proposes
to apply mixup [46] at the feature level and introduce pose level information,
which reaches a new state-of-the-art performance in this task.

In addition, all the works rely on shape prior of specific categories. As a result,
additional category annotation is needed to recognize the category of the input
image. Then these methods can construct shape prior according to the category
annotation, which is not very suitable for category-agnostic 3D reconstruction
with novel categories.
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The previous works of exploring shape prior for 3D reconstruction of novel
categories are insightful and reasonable. However, there still exits a challenge
on how to handle shape variety within a novel category in the context of few-
shot learning. In this paper, we present a novel deep network model with a
memory that can store a shape and its corresponding image as a key-value pair
for retrieval. When an image of a novel category is inputted to the network,
our deep network can select and combine appropriate shapes retrieved from the
memory without category annotation to guide a decoder for 3D reconstruction.
In order to adaptively combine the stored shapes as a prior for the downstream
3D reconstruction task, a multi-head attention shape prior module is proposed.
Figure 1(a) shows the example on novel watercraft category 3D reconstruction
performance between traditionally category-specific method [8] and our method.

Besides, we propose a 3D-aware contrastive loss that pulls together the image
features of objects with similar shape and pushes away the image features with
different 3D shape in the latent feature space, which helps for both organizing the
image feature and improving the retrieval accuracy of memory network. Our 3D-
aware contrastive loss takes into account the difference of shape as a weighting
term to reduce or stress the positiveness of a pair, regardless of the category or
instance, as we aim at a category-agnostic 3D reconstruction network.

In Smmary, Our Contributions are as Follows: We propose a novel Mem-
ory Prior Contrastive Network (MPCN) that can retrieve shape prior as an
intermediate representation to help the neural network to infer the shape of
novel objects without any category annotations.

Our multi-head attention prior module can automatically learn the associa-
tion between retrieved prior and pay attention to different part of shape prior.
It can not only provide prior information between object categories, but also
represent the differences within objects in the same category.

The network with both reconstruction loss and a contrastive loss works
together for better result. Our improved 3D-aware contrastive loss takes into
account of the difference of positive samples, which is more suitable for super-
vised 3D tasks.

Experimental results on ShapeNet [3] dataset show that our method greatly
improves the state-of-the-art methods on the two mainstream evaluation metrics
using Intersection over Union and F-score. The reconstruction results on the real-
world Pascal3D+ [41] dataset also demonstrate the effectiveness of our method
quantitatively and qualitatively.

2 Related Work

Deep Learning 3D Reconstruction. Recently, Convolutional Neural Net-
work (CNN) based single-view 3D reconstruction methods become more and
more popular. Using voxels to represent a 3D shape is suitable for 3D CNNs. In
the early work 3D Recurrent Reconstruction Neural Network (3D-R2N2) [8], the
encoder with a Recurrent Neural Network (RNN) structure is used to predict
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3D voxels by a 3D decoder. A follow-up work, 3D-VAE-GAN [39], explores the
generation ability of Variational Autoencoders (VAEs) and Generative Adver-
sarial Networks (GANs) to infer 3D shapes. Marrnet [38] and ShapeHD [40]
predict the 2.5D information such as depth, silhouette and surface normal of an
input RGB image, and then use these intermediate information to reconstruct
the 3D object. OGN [30] and Matryoshka [27] utilize octrees or nested shape
layers to represent high resolution 3D volume. Pix2Vox [42] and Pix2Vox++
[43] mainly improve the fusion of multi-view 3D reconstruction. Mem3D [45]
introduces external memory for category-specific 3D reconstruction. However,
its performance relies on a large number of samples saved during the training
process. More recently, SSP3D [47] propose a semi-supervised setting for 3D
Reconstruction. In addition to voxels, 3D shapes can also be represented by
point clouds [9,20,35], meshes [36,37] and signed distance fields [21,44].

Few-Shot Learning. Few-shot learning models can be roughly classified into
two categories: metric-based methods and meta-based methods. Metric-based
methods mainly utilize Siamese networks [19], match networks [7,33] or pro-
totype networks [10] to model the distance distribution between samples such
that similar samples are closer to each other and heterogeneous samples are far
away from each other. Meta-based methods [26] [25] and meta-gradient based
methods [4,15,28] are teaching models by using few unseen samples to quickly
update the model parameters in order to achieve generalization.

Few-Shot 3D Reconstruction. Wallace et al. [34] introduce the first method
for single-view 3D reconstruction in the few-shot settings. They propose to com-
bine category-specific shape priors with an input image to guide the 3D recon-
struction process. However, in their work, a random shape or a calculated aver-
age shape is selected for each category as the prior information, which cannot
account for shape diversity among objects in a category. In addition, the method
does not explicitly learn the inter-class concepts. Compositional Global Class
Embeddings (CGCE) [22] adopts a solution to quickly optimize codebooks for
3D reconstruction of novel categories. Before testing on a novel category, the
parameters of other modules are fixed. Only the weight vector of codebooks are
optimized with a few support samples from the novel category. Therefore, given
a new category, CGCE needs to add a new codebook vector for this category and
finetune the weight parameters, which makes the whole process complicated and
inefficient. Pose Adaptive Dual Mixup (PADMix) [6] proposes a pose adaptive
procedure and a three-stage training method with mixup [46]. It tries to solve
the pose-invariance issue by an autoencoder but its shape prior module is sim-
ilar to Wallace [34] and has the drawbacks of complicated three-stage training
strategy.

3 Method

Our aim is to design a category-agnostic model, which can achieve superior
generalization ability of single-view 3D reconstruction for novel categories with
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Fig. 2. An overview of the proposed MPCN. In the training stage, we only use base
categories to train the model, and insert memory slots into the memory network as
alternative prior according to the rules we set. In the test phase, the memory network
saves few shot of support set of the novel category to reconstruct 3D volumes of the
query set.

limited support data. Suppose there is a base 3D dataset, defined as Db =
{(Ii, Vi)}Ki=1, where Ii and Vi denote the ith image and its corresponding 3D
shape represented using voxels, respectively. K is the number of image and
voxel pairs in the dataset. We denote the categories in the base dataset Db as
base categories. Let Ds = {(Ii, Vi)}Mi=1 be another dataset of (image, voxel)
pairs with M examples. The categories in Ds are defined as the novel categories,
which are different from those in Db. Ds is called the support set, where M � K.
Meanwhile, there is a large test or query set Dq = {(Ii, Vi)}Ni=1 with N examples.
Examples in Dq and Ds are all within the novel categories. Note that we only
use Db and Ds for training. The support set Ds can be used as prior information.
We hope that the model can be designed to be category-agnostic and achieve
good performance in the query set Dq.

3.1 Memory Network

In most previous works on single-view 3D reconstruction, the shape prior infor-
mation is learned from the model parameters, which leads to category collapse
when transferring to novel categories. As mentioned in [31], such kind of model
makes the problem degenerated into a classification task. To alleviate this issue,
directly using 3D shapes as priors is an intuitive and effective way. As shown
in Fig. 2, we adopt an explicit key-value memory network to store and calcu-
late shape priors. In the training and testing stages, the CNN features of the
input image is extracted by a 2D encoder. Then a retrieval task is performed,
where the keys of the samples stored in the memory network are compared to
the query vector and the corresponding Top-k retrieved shapes are sent to the
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prior module for generating prior features. Specifically, as shown in Eq. (1), the
input image Iq is first encoded by a 2D encoder E2D, then the image features
and shape prior features are concatenated. Finally, the 3D shape is inferred by
a 3D decoder D3D.

pr = D3D(Concatenate(E2D(Iq),prior feature)), (1)

where pr is the final predict volume.

Memory Store. The external memory module is a database of experiences.
Each column in the memory represents one data distribution. In MPCN, two
columns of structures in the form of key-value are stored. A key is a deep feature
vector of an image, and its value is the corresponding 3D shape represented using
voxels. Each memory slot is composed of [image feature, voxel], and the memory
module database can be defined as M = {(Ii, Vi)}mi=1, where m represents the
size of the external memory module. We use a simple but effective memory
storage strategy to store data in a limited memory size. During training stage,
when generating a target shape with MPCN, we calculate the distance d(pr, gt)
between all the samples’ prediction and target shape of a batch as in Eq. (2):

d(pr, gt) =
1

rv3

∑

i,j,k

(pr(i,j,k) − gt(i,j,k))
2
, (2)

where rv is the resolution of 3D volumes, gt is the ground truth volume. For a
sample (Ik, Vk) , if d(pr, gt) is greater than a specified threshold δ, we consider
that the current network parameters and the prior have poor reconstruction
performance on this shape. So we insert (Ik, Vk) into the external memory module
and store it as a memory slot in order to guide the reconstruction of similar
shapes in the future. We maintain an external memory module similar to the
memory bank (queue). When the memory is full, the memory slot initially added
to the queue will be replaced by later one. This makes sense because the later
image features are updated with iteration of the model training.

Memory Reader. Each row of the external memory database represents a
memory slot. The retrieval of the memory module is based on a k-nearest neigh-
bor algorithm. When comparing the CNN features of the current query image
and the image features of all slots in the memory network, we use the Euclidean
metric to measure the differences. In order to obtain the distance between the
query matrix and the key matrix of the memory network conveniently, we use
the effective distance matrix computation to calculate the matrix of Euclidean
distance as shown in Eq. (3):

Distance = ‖Q‖ + ‖K‖ − 2 ∗ QKT , (3)

where Q ∈ Rb×2048 is query matrix, K ∈ Rm×2048 is memory-key matrix, b is
the batch size, and m is the memory size.
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Fig. 3. An overview of the proposed Memory Prior Module.

After calculating the distance, we select the nearest k retrieval results as
prior information, which is defined as R = {(Ii, Vi)}ki=1. {Ii}ki=1 represents k
retrieved image features, {Vi}ki=1 represents k retrieved voxels. When the first
batch is searched, the memory will be empty. However, we will take out k all-
zero tensors, which increases the robustness of the model to some extent. Even
without the shape prior as a guide, our model should reconstruct the 3D model
according to the 2D features of the image.

3.2 Prior Module

The prior module can first obtain the set {(Ii, Vi)}ki=1 retrieved by the external
memory module from the previous step. Note that shape volume is the original
voxel saved at this stage, and its size is 323. So the model needs to extract shape
features by a 3D shape encoder before the downstream processing.

ki = Ii, vi = Encoder3D(Vi), (4)

Q = IqWq,K = kiWk, V = viWv, (5)

eq = Q + LayerNorm(MHA(Q,K, V )), (6)

prior featureq = eq + LayerNorm(FFN(eq)), (7)

In previous works, only 3D voxels are regarded as the prior features. In
contrast, as shown in Fig. 3, we use the attention based architecture to extract
shape prior features by exploring the association between image features and
3D shape. Concretely, we take the query image feature Iq as the query, the
retrieved image feature {Ii}ki=1 as the key, and its corresponding 3D shape feature
{vi}ki=1 as the value. As shown in Eq. (5), we first use three separate linear layers
parameterized by Wq, Wk and Wv to extract query, key, value embedding Q, K
and V.

Then the embeddings are forwarded to the multi-head attention (MHA)
[32] and layer normalization (LayerNorm) module [1] to perform cross-attention
between the query and every key. The output of the attention is fused to the orig-
inal input query embedding to get enhanced feature eq. Afterward, the obtained
features eq are sent into feed-forward network (FFN) and layer normalization
(LayerNorm). The output priorfeatureq is obtained by adding up the feed-
forward module output with residual connection as in Eq. (6) and Eq. (7).
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Fig. 4. An example of 3D-Aware Contrastive Loss, which pulls together the positive
samples with similar 3D shape (e.g., pos1 and pos2) by different weight, and pushes
apart the negative samples with different 3D shape (e.g., neg1 and neg2).

3.3 3D-Aware Contrastive Learning Method

We believe that Memory Prior Network can work effectively mainly based on the
accuracy of 2D image embedding retrieval. In order to improve the retrieved prior
accuracy provided by memory network, previous work generally used triple loss
[13] to optimize encoder, which is effective for simple classification problems [16]
[48]. However, for 3D reconstruction task, the triplets need to construct positive
and negative samples according to the threshold of specific shape difference,
which is an empirical and troublesome step [45].

Recently, contrastive learning method [5] [11] train an image encoder maxi-
mizing the similarity of different transformations of the same sample and min-
imizing the similarity with other samples. The proposed loss LinfoNCE [11]
achieves great success in self-supervised representation learning. However, their
success depends on the large batch size and memory occupation, and taking all
of samples in the same batch as negative pairs may be wrong for supervised
tasks. In addition, supervised contrastive loss [17] tries to solve this problem but
it mainly focuses on simple classification problem.

We hope to design a loss that can adaptively pull together the image embed-
ding pairs with similar 3D shape and push away the image embeddings with
different 3D shapes. Therefore, as shown in Fig. 4. we introduce an improved
3D-aware contrastive loss, which considers the positivity of positive pairs. Con-
cretely, for each image pair (q, k), we calculate the distance between the associ-
ated 3D shape d(Vq, Vk) ∈ [0, 1], we take (q, k) as a positive pair if d(Vq, Vk) < δ,
then a weight is calculated by wq,k = (1 − d(Vq, Vk) × γ), which is considered as
the important weight of the positive pair in our 3D-aware contrastive loss:

L3DNCE = −log

∑
p∈[1..M ] wq,p · exp(fq · fp/τ)

M · ∑
k∈[1..N ] exp(fq · fk/τ).

(8)

where d(Vq, Vp) is the same as Eq (2), q is a query image, p is the positive samples
of q according to d(Vq, Vp) < δ,

∑
k∈[1..N ] mean the samples in the same batch

with q, and f is image encoder. Intuitively, the more similar the 3D shape of two
objects (q, p) is, the greater its weight wq,p is, and the closer the image features
of the two objects are.
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Algorithm 1. Training algorithm
1: for epoch in epochs do
2: flush memory slots
3: for batch idx in range(max episode): do
4: Load query images, target shape from train set Db

5: embed2d = Encoder2d(query image)
6: Key, Value, Distance = Top-K (embed2d)
7: embedPrior = Prior(embed2d, Key, Value, Distance)
8: embed = concatenate(Embed2d, embedPrior)
9: predict = Decoder3d(embed)

10: d = computeDis(predict, target shape)
11: if d > δ: then
12: insert(image, voxel) to external memory
13: end if
14: Train on predict and target with backprop
15: end for
16: end for

3.4 Training Procedure in Few-Shot Settings

We adopt a two-stage training strategy. In the first stage, we train the initializa-
tion model on the base category data Db. In the second stage, we use few-shot
novel category samples in support set Ds to finetune the network. Both stage
adopt the training method based on episodes as shown in the Algorithm 1. At
the beginning of each epoch, all slots of the memory are cleared to ensure that
the new round of training can re-determine which samples are inserted into the
memory module according to our memory store strategy. For test phase, we
first insert samples in support set Ds to the memory module as candidate prior
information according to the few-shot settings. Then it follows the same steps as
training stage to predict 3D shape in query set Dq. Finally, the reconstruction
results are evaluated by evaluation metric.

3.5 Architecture

Image Encoder. The 2D encoder shares the same ResNet backbone [12] as
that of CGCE [22]. Then our model follows with three layers of convolution
layer, batch normalization layer and Relu layer. The convolution kernel size of
the three convolution layers is 32 with padding 1. The last two convolution layers
are then followed by a max pooling layer. The kernel size of the pooling layer is
32 and 22, respectively. The output channels of the three convolution layers are
512, 256 and 128, respectively.

Prior Module. The 3D shape encoder of the prior module includes four convo-
lution layers and two max-pooling layers. Each layer has a LeakyRelu activation
layer, and the convolution kernel sizes are 53, 33, 33 and 33, respectively. The
output Q,K,V embedding dimension of the Linear layer is 2048. The size of key
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Fig. 5. Examples of single-view 3D Reconstruction on novel category of ShapeNet with
shot-10. We show examples with clean background and with random background.

and value of the attention module are both 2048. This module has 2 heads in
attention blocks. Finally, the prior feature dimension is 2048.

Shape Decoder. There are five 3D deconvolution layers in this module. The
convolution kernel size is 43, stripe is 23, and padding is 1. The first four con-
volutions are followed by batch normalization and Relu, and the last is sigmoid
function. The output channels of the five convolution layers are 256, 128, 32, 8
and 1, respectively. The final output is a voxel representation with size 323.

3.6 Loss Function

Reconstruction Loss. For the 3D reconstructions network, both the recon-
struction prediction and the ground truth are based on voxel. We follow previous
works [22,34,42,43] that adopt the binary cross entropy loss as our loss function:

Lrec =
1
r3v

r3v∑

i=1

[gti log(pri) + (1 − gti) log(1 − pri)], (9)

where rv represents the resolution of the voxel space, pr and gt represent the
predict and the ground truth volume.

Total Loss. The MPCN is trained end-to-end with the reconstruction loss and
3D-aware contrastive loss together as following:

Ltotal = Lrec + λL3DNCE (10)

where λ is hyperparameter, which is set to 0.001 in this work.
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4 Experiment

4.1 Experimental Setup

Dataset. We experiment with the ShapeNet dataset [3]. The setting of this
dataset is the same as [34]. Seven of 13 categories are designated as the base
classes that are used for training: airplanes, cars, chairs, displays, phones, speak-
ers and tables. The other categories are set as novel classes for testing. To fairly
compare with the previous works, we use the same dataset split as in [34] and
CGCE [22]. The datasets are provided by [8] which are composed with 137×137
RGB images and 32×32×32 voxelized representations. Pascal3D+ [41] dataset
has 12 different categories. It provides approximate 3D annotations for Pascal
VOC2012 and ImageNet [41]. Each category has about 10 CAD models, which
are generally not used for training directly. We finetune our MPCN with 8 cat-
egories of Pascal3D+, and test it on four categories: bicycle, motorbike, bottle
and train. For fair comparison, we use Binvox [23] tool to render the voxel rep-
resentation from the CAD model, and the voxel resolution is also 32 × 32 × 32.

Table 1. Comparison of single-view 3D object reconstruction on novel class of
ShapeNet at 323 resolution with different available shot.We report the mean IoU
per category. The best number for each category is highlighted in bold.

0-shot 1-shot 10-shot 25-shot

Category B0 Wallace CGCE PADMix MPCN Wallace CGCE PADMix MPCN Wallace CGCE PADMix MPCN

Cabinet 0.69 0.69 0.71 0.67 0.72 0.69 0.71 0.66 0.68 0.69 0.71 0.68 0.74

Sofa 0.52 0.54 0.54 0.54 0.57 0.54 0.54 0.57 0.60 0.54 0.55 0.59 0.65

Bench 0.37 0.37 0.37 0.37 0.39 0.36 0.37 0.41 0.41 0.36 0.38 0.42 0.45

Watercraft 0.28 0.33 0.39 0.41 0.41 0.36 0.41 0.46 0.54 0.37 0.43 0.52 0.55

Lamp 0.19 0.20 0.20 0.29 0.29 0.19 0.20 0.31 0.32 0.19 0.20 0.32 0.37

Firearm 0.13 0.21 0.23 0.31 0.24 0.24 0.23 0.39 0.52 0.26 0.28 0.50 0.52

Mean 0.36 0.38 0.40 0.43 0.44 0.40 0.41 0.47 0.51 0.41 0.43 0.51 0.54

Evaluation Metrics. For fair comparison, we follow previous work [34] [22] [42]
using Intersection over Union (IoU) as the evaluation metrics. The IoU is
defined as following:

IoU =

∑
i,j,k I(p̂(i,j,k) > t)I(p(i,j,k))∑

i,j,k I[I(p̂(i,j,k) > t) + I(p(i,j,k))]
, (11)

where p̂(i,j,k) and p(i,j,k)represent the predicted possibility and the value of
ground truth at point (i, j, k), respectively. I is the function that is one when
the requirements are satisfied. t represents a threshold of this point, which is set
to 0.3 in our experiment.

Implementation Details. We used 224 × 224 RGB images as input to train
the model with a batch size of 16. Our MPCN is implemented in PyTorch [24]
and trained by the Adam optimizer [18]. We set the learning rate as 1e− 4. The
δ and γ are set to 0.1 and 10. The k of the retrieval samples Top-k is 5, the τ is
set 0.1. The memory size m is set to 4000 in the training stage, and only 200 in
the testing stage.



66 Z. Xing et al.

Baseline. We compare our proposed MPCN with three state-of-the-art meth-
ods: Wallace [34], CGCE [22] and PADMix [6]. We also follows the zero-shot
lower baseline in CGCE [22]. Zero-shot refers to the result of training on the base
categories with only single-image and testing directly on the novel class without
any prior. Image-Finetune method refers to training on the base categories and
finetuning the full network with few available novel categories samples.

4.2 Results on ShapeNet Dataset

We compare with the state-of-the-art methods on the ShapeNet novel categories.
Table 1 shows the IoUs of our MPCN and other methods. Results in Table 1 from
other models are taken from [6]. For few-shot settings, we follow the evaluation
in CGCE [22] and PADMix [6] shown the results in the settings of 1-shot, 10-shot
and 25-shot. It can be seen that our method is much better than the zero-shot
baseline respectively, and greatly outperforms SOTA’s methods. Experimental
results show that MPCN has great advantages when the shot number increases,
mainly because it can retrieve prior information more related to the target shape.
Even in the results of 1-shot, there are some improvements, mainly because our
model can select the most appropriate prior of shapes as well as image features,
and use the differences of other shapes to exclude other impossible shapes. Our
MPCN results are shown in Fig. 5. It can be seen that our model can obtain
satisfactory reconstruction results for novel categories than any other SOTA
methods even when the angles of input images are different.

Table 2. Comparison of single-view 3D object reconstruction on Pascal3D+ at
323resolution. We report both the mean IoU of every novel category. The best number
is highlighted in bold.

Bicycle Motorbike Train Bottle Mean

Zero-shot 0.11 0.27 0.35 0.10 0.2074

Image-Finetune 0.20 0.28 0.35 0.32 0.2943

Wallace [34] 0.21 0.29 0.40 0.43 0.3324

CGCE [22] 0.23 0.33 0.37 0.35 0.3223

MPCN(ours) 0.28 0.39 0.37 0.46 0.3748

4.3 Results on Real-world Dataset

In order to compare with Wallace et al. [34] further, we also conducted experi-
ments on the real-world Pascal3D+ dataset [41]. Firstly, the model is pre-trained
on all 13 categories of the ShapeNet dataset [3]. Then the model is finetuned
with Pascal3D+ base category dataset, and the final test set is selected from
the four novel categories. Note that the experiment is set of 10-shot. The exper-
imental results show that our method outperform zero-shot baseline by 16.74%,
also it is the best compared with SOTA methods. Especially for bicycle and
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motorbike categories with large shape difference and variability, our model per-
form best. But for the category with subtle shape difference (e.g., train), the
reconstruction results tend to align to the average of prior shape, so Wallace [34]
shows marginal improvement over ours. But note that our MPCN selects prior
information by memory network automatically, while Wallace et al. [34] need
the category annotations of the input images and choose shape priors manually.
The experimental results are shown in the Table 2.

Table 3. The effectiveness of the different modules and losses. All the results are
tested on novel categories of ShapeNet and Pascal3D+ with 5-shot. We report the
mean IoU(%) of novel categories. The best number is highlighted in bold.

MHA LSTM Random Average Finetune L3DNCE LinfoNCE ShapeNet Pascal3D+

Zero-shot 35.68 20.74

ONN(5) 40.90 42.50

Image-Finetune � 40.82 27.49

MPCN-Top1 � � � 39.95 31.65

w LSTM � � 40.52 25.63

w Random prior � � 35.52 22.05

w average � � 41.32 29.85

w LinfoNCE � � 42.98 27.98

w/o L3DNCE � 43.05 28.76

w/o finetune � � 45.82 30.32

ours � � � 47.53 33.54

5 Ablation Study

In this part, we evaluate the effectiveness of proposed modules and the impact of
different losses. We choose the setup of 5-shot on both ShapeNet and Pascal3D+
dataset for comparative experiment if not mentioned elsewhere.

Retrieval or Reconstruction. In order to prove that our method is superior
to the retrieval method, we just take the highest similarity retrieved shape as the
target shape. That is the result of MPCN-Top1 in Table 3. In addition, Image-
Finetune method is also shown for comparison. The results in Table 3 shows that
our MPCN outperforms any upper retrieval or finetune methods in the few-shot
settings.

Analysis of Prior Module. We analyze the prior extraction module based on
attention in MPCN. Because previous methods using external memory network
adopt LSTM [14] in the shape prior fusion stage, we replace the attention part of
MPCN with LSTM (w LSTM) for the purpose of comparison. We also compare
the average-fusion (w average) of the retrieved Top-5 object volume features.
In addition, the random initialization of prior vectors (w Random prior) is also
compared in the experiment.

The experimental results in Table 3 show that our prior module plays an
important role for guiding the reconstruction of 3D objects. The fusion of Top-5
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Fig. 6. Visualization of features maps from the retrieved 3D volumes and the corre-
sponding reconstructions.

average method and random prior obviously cannot make full use of similar 3D
volumes. Our attention module can capture the relevance of different 3D objects
better than LSTM, and shows more powerful ability of inferring 3D shapes by
using prior information in the few-shot settings. Figure 6 illustrates some shape
priors selected by our model. We demonstrate that the multi-head attention
module can adaptively detect the proper parts of the retrieved shapes for 3D
reconstruction of novel categories.

Analysis of Loss and Finetune. In order to further prove the effectiveness of
our proposed 3D-aware contrastive loss, we remove L3DNCE in the training stage,
as (MPCN w/o L3DNCE) shown in Table 3. Besides, we replace the improved
L3DNCE with the traditional contrastive loss, as shown (MPCN w LinfoNCE) in
Table 3. The results show that our comparison L3DNCE has a great contribution
to the improvement of experimental effect, mainly because it not only improves
the retrieval accuracy of memory a prior module, but also makes the intent space
of 2D representation more reasonable. In addition, using few-shot novel category
samples in support set Ds to finetune the network (w finetune) in the second
training stage is also important for the performance.

6 Conclusion

In this paper, we propose a novel category-agnostic model for 3D object recon-
struction. Inspired by the novel 3D object recognizing ability by human-beings,
we introduce an external memory network to assist in guiding the object to recon-
struct the 3D model in few-shot settings. Compared with the existing methods,
our method provides an advanced module to select shape priors, and fuses shape
priors and image features to reconstruction 3D shapes. In addition, a 3D-aware
contrastive method is proposed for encode 2D latent space, which may be used
for other supervised tasks of 3D vision. The experimental results show that our
MPCN can outperform existing methods on the ShapeNet dataset and the Pas-
cal3D+ dataset under the settings of few-shot learning.
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