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Introduction

I have planned for years and am now trying hard to write a book on theory of
Markov processes and symmetric Markov processes so that graduate students
in this field can move to the frontier quickly. In my impression, Markov
processes are very intuitive to understand and manipulate. However to make
the theory rigorously, one needs to read a lot of materials and check numerous
measurability details it involved. This is a kind of dirty work a fresh graduate
student hates to do, but has to do. My purpose is to help young researchers
who are interested in this field to reduce the fear when they face it.

This book roughly covers materials of general theory of Markov processes,
probabilistic potential theory, Dirichlet forms and symmetric Markov pro-
cesses. I dare not say that all results are stated and proven rigorously, but
I could say main ideas are included. For completeness and rigorousness, the
readers may need to consult other books. The classic reference books are

listed as follows.

1. Dynkin, Markov processes, Moscow, 1963; English translation, Springer,
Berlin, 1965

2. Kellogg, Foundations of potential theory, Springer, 1967

3. Meyer, Processus de Markov, Lecture Notes in Math 26, Springer, 1967
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10.

11.

12.

13.

14.

15.

16.

Blumenthal, Getoor, Markov processes and potential theory, Academic
Press, 1968

Getoor, Markov processes: ray processes and right processes, Lecture
Notes in Math 440, Springer, 1975

Berg & Forst, Potential theory on locally compact abelian group, Springer,
1975

Port and Stone, Brownian motion and classical potential theory, Aca-
demic Press, 1978

Fukushima, Dirichlet forms and Markov processes, Kodansha and North-

Holland, 1980
Chung, From Markov processes to Brownian motion, Springer, 1982

Doob, Classical potential theory and its probabilistic counterpart, Springer,
1983

Bliedtner & Hansen, Potential Theory, Springer, 1986

Sharpe, General theory of Markov processes, Academic Press, 1988
Getoor, Excessive measures, Birkhauser, 1990

Dellacherie, Meyer, Probabilites et Potentiels, Hermann, 1978-1992
Ma, Rockner, Introduction to the theory of Dirichlet forms, Springer, 1992

Fukushima, Oshima, Takeda, Dirichlet forms and symmetric Markov pro-

cesses, de Gruyter, 1995
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We shall state some fundamental results in general theory of stochastic
processes mainly developed by Strasburg school of probability. Let (€2,.%,P)
be a complete probability space. A family of o-algebra (%) = { % : t > 0}
is called a filtration if for any 0 < s < ¢, ¥, C %, C .#. We say a filtration
(.#;) satisfies the usual condition if each .%#; contains all null sets in .# and
it is right continuous, namely, for each ¢ > 0,

T =T =) 7. (0.1)

s>t

Let (#) be a filtration and X = (X; : t > 0) a real-valued stochastic
process. X is (%#;)-adapted (or adapted, if no confusion will be caused) if
for each t > 0, X, is .%;-measurable. Moreover X is (.%#;)-progressively
measurable if for each t > 0, the map (s,w) — X (w) is measurable as a
map from ([0,t] x Q, A[0,t] x %) to (R, B(R)), where Z[0,t] and B(R) are
Borel g-algebra on [0, ¢] and R, respectively. If no confusion is caused, (%)
in the front may be omitted. A subset A C R x () is progressively measurable
if so is the process (t,w) — 14(t,w). A process is called right continuous or

continuous or left continuous if almost all sample path has such regularity.

Theorem 0.0.1 A right continuous and adapted process is progressively

measurable.

The least g-algebra on R x 2 such that all adapted right continuous real
processes are measurable is denoted by &', an optional o-field. A process
which is &-measurable is called optional. Then the theorem above implies
that an optional process is progressively measurable. A map 7 : Q — [0, 00|
is called an (.%;)-stopping time if for each t > 0, {7 < t} € %, For a
stochastic process X and a subset A C R, define the hitting time of A as

Ty=inf{t >0: X; € A}. (0.2)
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Theorem 0.0.2 If the filtration (.%;) satisfies the usual condition and X is
progressively measurable, then for any Borel subset A C R, T4 is a stopping

time.

The following theorem is called the section theorem, which is fundamen-

tal.

Theorem 0.0.3 Let X be a bounded progressively measurable process. If

for any bounded decreasing sequence of stopping times {7},
lim E[XTn] = E[Xlimn Tn]? (OS)

then X is right continuous.



Chapter 1

Right Markov processes

1.1 Right continuous Markov processes

In this section we shall first introduce the notion of right processes, which,
essentially due to P.A. Meyer, makes classical potential theory operate almost
naturally on it. Though, more or less, right processes are right continuous
Markov processes with strong Markov property, it is a difficult task to give
the definition clearly and concisely. Let (E, &) be a topological space with its
Borel g-algebra. For any probability measure p on E, & is the completion

of & under p and set
& =(&" (1.1)
m

where p runs over all probability measures on E. A set in &* is called a uni-
versally measurable subset of E. Any probability measure on (F, &) may be
uniquely extended on &*. The requirement for topology on E may vary, but
in most cases, Radon space or Lusin space, which is a universally measurable

subset or Borel subset of a compact metric space, respectively. One reason
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why we need to start from seemly so general topology is that in this way the
class of right processes keeps stable under usual transformation in Markov

processes such as killing transform, time change and drift transform.

Definition 1.1.1 Let E be a Radon space. A family of kernels (F;);>¢ on
(B, &™) is called a transition semigroup if P,P; = P4 for any ¢,s > 0 and
Py(xz,E) <1forany ¢t >0 and z € E. In addition, if P(x, E) = 1 for any
t > 0and x € E, it is called a transition probability semigroup. A transition
semigroup (F;) is called a Borel semigroup if E is Lusin space and each P, is a
kernel on (F, &), or maps a Borel measurable function to a Borel measurable

function.

It is known that by joining a point A, called a cemetery point, to E, (P;)

may be extended into a transition probability semigroup on Ex.

Definition 1.1.2 Let (E, &*) be a Radon space and its universal Borel sun-

sets. A group of notations
X = (Qv g7 %7 Xt7 0t7 Pw)

is called a right continuous Markov process on state space F or say X

satisfies (HD1) if the following conditions are satisfied.

(1) (2,9,%4,) is a filtered measurable space and (X) is an Ea-valued pro-
cess &x-adapted to (¥;), more precisely for any ¢ > 0, X; is a mea-
surable mapping from (Q,%;) to (Fa,&X). For every x € Ea, P7 is a
probability measure on (2, %)

(2) (04)>0 is a family of shift operators for X i.e., 6; : Q — € and, identi-
cally for any t,s > 0,

9,5095 = 9t+s and Xtoes = XtJrS.



CHAPTER 1. RIGHT MARKOV PROCESSES 7

(3) (normality) For x € E,

Moreover x +— P*(H) is universally measurable for any H € ¥.

(4) (Markov property) For every t,s > 0, f € b&* and x € E, it holds

P*_a.s.

Px(f(Xt+s>|gs) = Ptf(Xs) (12>

(5) (regularity) ¢t — X; is a right continuous process on En = F U {A}

almost surely.

(6) (life time) Define ((w) := inf{t : X; = A}. Then X;(w) € E for
t < ((w), and X;(w) = A for all t > ((w). Hence ( is called the lifetime
of X.

A transition semigroup (P,) satisfies (HD1) if it has a realization satisfying
(HD1). The word for almost all means “for any z € F and P*-almost all”,
i.e., a measurable subset 2y of 2 such that P*(€2y) = 1 for all x € E. Notice
that the measurability in (3) is not so much restricted since it holds at least
for o-algebra generated by (X;) itself. Let (Z*) (resp., (%)) be the natural
filtration of (X;) generated by &* (resp., &), precisely,

F =g (U X;l(ﬁ)) L F =0 (U X;l(@) : (1.3)

s<t s<t

Clearly for any t > 0, Z>* C %, and .72 C 4. By monotone class theorem,
x — P*(H) is &*-measurable for any H € F2*. Furthermore if (P;) is Borel

semigroup, = — P?(H) is &-measurable for any H € #2..
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Fix now such a process X on E. For any probability measure p on (F, &),

define
W@U:/P%MMMLHE%. (1.4)

Denote by ¢* the completion of ¥ with respect to P# and ¢/ the o-field
generated by ¢, and all PA-null sets in ¢*. We usually say that ¢/ is the
augmentation of 4; in (Q2, %, P").

Exercise 1.1 Prove that the completion of .#2 with respect to P* is equal
to the completion of .Z2* with respect to P*. The same conclusion holds for

the augmentation of (#?) and (Z*) in (Q,.F,PH).

Set
g =N9"%=9" (1.5)
M H

where p runs over all probability measures on (E,&). The filtration (g?;)
is called the augmentation of (4;). It is not hard to see that the process
has Markov property with respect to (f%) and actually for any probability
measure g on F, it holds P*-a.s. for t,s > 0, f € b&™

PM(f(Xt+S>’gsu> = Ptf<Xs>' (1-6)

The procedure to get (4/*) and (¥,) is called augmentation of the filtra-
tion of X with respect to the laws (P*). This is a ‘dirty’ work which has to
be done for a Markov process. Therefore we may assume from the beginning
that ¢ and (%) are augmented. The augmentation of the natural filtration
(#2) is denoted by (%), which is also the augmentation of (#*). After the
augmentation, we have to check that we still have the necessary measurabil-

ity such as
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(1) For B € ¢4, x — P*(B) is universally measurable;
(2) X; is measurable from (2,%;) to (F,&™);
(3) 6; is measurable on (£2,9).

The good news about augmentation which we shall prove later is that
(%,) will satisfy the usual condition when a slight more condition is imposed,
and then the hitting time of any optional set is then a stopping time.

For o > 0, a [0, oo]-valued measurable function f on (E, &™) is a-supermidian
if em®* P, f < f for each t > 0 and a-excessive if, in addition, e P, f 1 f as

t } 0. Let S* be the set of all a-excessive functions.

Definition 1.1.3 Let E be a Radon space and (FP;) a transition semigroup

on F. Assume that the collection
X = (Qa g> gta Xt7 6t7 Px)

is a right continuous Markov process on F with (P;) as its semigroup. Then
X is said to be a right process provided X satisfies (HD2), namely for
any a-excessive function f, ¢ — f(X;) is right continuous almost surely.
Moreover if E is Lusin space and (F;) is a Borel semigroup, then X is called

a Borel right process.

The first important property of right processes is strong Markov property.
We now give two fundamental theorems for right processes. Note that we
may always assume that {2 is the canonical space, i.e., the space of right
continuous maps from [0, 00) to E. To state strong Markovian property, we
assume that readers are familiar with the theory related to stopping times.

We shall now introduce the notion of potential which plays an essential
role in general theory of Markov processes. To define a-potentials, some mea-
surability needs to be clarified in advance. For a bounded continuous function

fon E t— f(X;)isright continuous and hence (¢, z) — E*[f(X})] = P, f(x)
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jointly measurable on (R* x E,Z(R") x &*). It is also true for bounded
Borel measurable f by monotone class theorem. The following exercise makes

it possible to define resolvent of (P;) and use Fubini theorem.

Exercise 1.2 For f € b&™, (t,x) — E*[f(X})] is measurable for the com-
pletion of (Z(R™1) x &*) with respect to the product measure of any finite

measure on R and a finite measure on &*.

For a > 0 and f € b&™, define the resolvent or a-potential of f
o f(z) = /O et ()t (1.7)
=E" /00 e f(X,)dt. (1.8)
0
Then we have the well-known resolvent equation
U =U0"4(y —a)UU" (1.9)

for a;,y > 0.

Theorem 1.1.4 Let X be a right process on £ with transition semigroup
(P;). Then

(1) X has strong Markov property with respect to (#7,), i.e., for any
(Z2.)-stopping time o, f € b&*, t > 0 and z € E,

E* [f(Xt+0)]-{0<oo}|‘gZ£+] = 1{0<oo} EXU [f(Xt)]> (110>
P*-a.s.;

(2) for any probability u on E, (#/}) is right continuous, and then (%) is

right continuous.
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Proof. (1) Let f be a uniformly continuous bounded function on E. Assume

that o < co. Set

k
On = Z Q_nl{(k71)2—"§a<k2—”}

k>1
Then o, | o and o, is (%)-stopping time. By the right continuity and
simple Markov property of X, we have for any probability u on E,

& [ e (Xt = € [ e f(Xe, )
0 " 0
. < . k
= h}zng EV (/0 e tf(XHQ%)dt; On = 2_n)
= lim ) E* (EX(;C")/ e f(Xy)dt; 0, = 2%)

= lim E*U° f(X,, ) = EFU f(X,)
= / e EFEX (D) £(X,)dt.
0

This means that ¢ — E“f(X,,,) and ¢t — E*[EX(®) f(X,)] have the same
Laplace transform and it implies they are identical because they are both

right continuous. Hence
B f(Xito) = E“[EX(U)f(Xt)]

from which, the strong Markov property with respect to (.%7,) follows.
(2) Obviously (1) implies that X has simple Markov property with re-
spect to (F#),), i.e., for any bounded random variable Y on (Q, %) and a

probability x4 on E, it holds P*-a.s.
EX(Yol, | F) ) = EX(Y) = EF(Yo0,|.F7)). (1.11)
It is easy to verify that when Y = f1(X1) - fu(X4,),

E'(Y]F) = EM(Y]F)),
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and actually it holds for any Y € 0.#2 by monotone class theorem. Then for
A e Z)., we have Pr-as. 14 = E*(14].%), and hence A € Z/'. It implies
that

F), C F.
The conclusion follows from an assertion that the o-field generated by #,

and P#-null sets equals .Zf,, which is left to the readers as an exercise. [

By (2) in Theorem %a}/ always assume without loss of generality
that the filtration (%) satisfies usual condition, i.e., it contains all null sets
and right continuous. By augmentation, the strong Markov property may be
stated as follows. For any probability x4 and a non-negative function f € &,

if o is an (Z}')-stopping time, then
Eﬂ(f(Xt+a)1{a<oo}|ytu) = Ptf(Xo)l{T<oo}- (112>

Exercise 1.3 Prove that
E“/ e ' f(X;)dt = EV (e*aTU“f(XT)) ) (1.13)
T
The following lemma lists some properties of excessive functions and is
easy to verify. For a > 0, a non-negative measurable function f on E, which
may take infinity, is called a-excessive, write f € S if (1) e P f < f for
each t > 0; (2) e P, f converges to f as ¢t | 0. When o = 0, we simply say

f is excessive and f € S.

Lemma 1.1.5 (1) S* is a cone.

(2) S® is stable under increasing limit.
(3)Ifa>pB>0,S*>8%and S =
(4) If f,g €S, fANge S~
(5)

5) If f is a-super-median and p is a probability measure on E satisfying

ST

r>f
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u(f) < oo, then the process (e~ f(X;)) is a super-martingale with respect
to PH.

Actually the proof of (4) needs to use (HD2) on the process.

Lemma 1.1.6 (1) For @ > 0 and &*-measurable f > 0, U*f € S*.

(2) For a > 0, f € S* if and only if BUTPf 1 f as B 1 +oo.

(3) For @ > 0 and f € S¢, there exist g, € b&7 such that U%g, 1 f as
n 1 4o00.

Since a super-martingale which is the limit of a sequence of right con-
tinuous super-martingales is also right continuous, we shall state following
weaker forms of (HD2). A negative function f on E is nearly Borel for X if
for each probability p on E there exist fi, fo € & with f; < f < f5 such that
two processes (f1(X:)) and (f2(X;)) are P#*-indistinguishable. A measurable
function f on (E, &™) is called optional if ¢ — f(X;) is indistinguishable
from an (%#;)-optional process, and nearly optional if for any probability
measure p on F, t — f(X;) is indistinguishable from an (.%#/')-optional pro-
cess. A set A € &* is optional or nearly optional if so is 14. Let &"° be the

set of nearly optional subsets of F which is a o-algebra.
Exercise 1.4 Prove that f is nearly optional if f is &"°-measurable.

The next theorem follows from the section theorem as stated in Theo-
rem ht).:(s).elf.tion
Theorem 1.1.7 Assume that (HD1) holds. If X is strong Markov and each
a-excessive function is nearly optional, then (HD2) holds. Therefore if (F;)

is Borel and X has strong Markov property, then (HD2) holds and each

a-excessive function is nearly Borel.

Proof. For any probability p, an increasing sequence {7,,} of stopping times
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with T" = lim7,,, and a non-negative bounded function g € &*, we have by

strong Markov property
EX (e*aT”Uag(XTn)) = E“/ e “g(X,)dt
— E“/ e “g(X;)dt = EV (e‘“TUag(XT)) .
T

Combining the assumption that U%g is nearly optional, it follows that ¢ —
It ti 1:100428-2
U%g(X,) is right continuous from Theorem }).(S).eBC. lFolrrllally by Lemma [T.T.6] 3 ),

t — f(X;) is right continuous for any a-excessive function f. O]

t:100425-2
Remark 1.1.8 Though Theorem T.1.7 hints that (HD2) may be equivalent
to strong Markov property, an example, when (P;) is not Borel, is presented
by Salisbury to show that a right continuous Markov process with strong

Markov property may not be a right process.

Theorem 1.1.9 Assume (HD1) holds. Let C be a linear subspace of C(E),
closed under function multiplication, which generates &. If, for any bounded

| € C, the process t — U® f(X;) is right continuous, then (HD2) holds.

Proof. 1t suffices to show that U%g is nearly optional for non-negative and

bounded g € &*. It is true by monotone class theorem for g € & and it follows
t:100425-2 o _

from the proof of Theorem T.1.7 that ¢ — U%g(X;) is right continuous. Let

now g € &* be bounded. For any probability u on E, there exist g;, 95 € &

such that g1 < g < g9 and pU*(ga—g1) = 0. Then for any ¢ > 0, U%g;(X;) <

Uag(Xt) S Uagg(Xt) and

EX (U (g2 — 91)(Xy) = pPU (g2 — g1) < e*'uU(g2 — 1) = 0.

Therefore two processes U%go(X.) and U%gy(X.) are P#-distinguishable, i.e.,
U®g is nearly optional. O
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Example 1.1.10 («a-subprocess) Let X be a right process on E with tran-
sition semigroup (P;). For a > 0, it is known that P* = e P, is also a
transition semigroup on F. Is it a transition semigroup of a right process?
Sure it is. But how do we construct the right process? Introduce the killing
operators (k;) on

Xs, s<t,
Xsokt = (].].4)

A s>t

Y

Intuitively k; makes no change before time ¢ but sends the path after ¢t to

cemetery. For x € E, define probability Q* on (Q2,.%) by

oW - [

0

o (e}

Yok,d(—e ") = aEz/ Yok,e ““du, (1.15)

0
where Y is a bounded or non-negative random variable on 2. Note that we

use Q for both probability and expectation. Let
XOc = (Qa¢g;7yt7Xt79tan)

which is called a-subprocess of X. It is easy to check that X is a right process

with transition semigroup (Pf). In fact,
QX)) = B [ f(Xi)ehe
= aE” /oo f(Xpe *du
¢
= e E'(f(X0)) = P f ().

The verification of (HD2) is left for those who are interested. |

Example 1.1.11 (Killing at leaving) Let X be a right process on F with
transition semigroup (FP;). Intuitively for a subset B, killing X at leaving

B shall give us a process which certainly inherits Markov property from X.
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Rigorously speaking, let B € &° and T' = T the hitting time of B. Define

a map w — krw on ) by

w(t), t<T;
krw(t) = (1.16)

A, t>T.
Hence the new lifetime is ( AT |
Example 1.1.12 (Doob’s h-transform) i

1.2 Feller processes and Lévy processes

A question we must ask is when and how we will have a right Markov process.
There are basically two ways: one is from Feller semigroup and the other is
through transformation as the example in the last section shows. In this
section we shall introduce Feller semigroup and prove that it may be realized

as a Markov process much better than a right process.

Definition 1.2.1 Let E be a locally compact metrizable space with a count-
able base. A transition semigroup (F;) on E is called a Feller semigroup if
(1) P,.Cx(E) C Coo(F) for each t > 0;

(2) for each f € C(F),

lim | 2of — floe = 0.

With other conditions, (2) above is equivalent to a weaker one: for each
f€C(F)and x € E, P.f(x) — f(z) ast | 0. The proof is a good exer-
cise. Since C(E) is a Banach space and Feller semigroup (P,) is a strongly
continuous semigroup on Cy (F), its infinitesimal generator determines (F;)
completely by Hille-Yosida theorem. The following theorem is actually a

corollary of regularization theorem of super-martingales.
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Theorem 1.2.2 Let (P;) be a Feller semigroup on E. Then (P;) has a

realization which is a Borel right process, which is called a Feller process.

Proof. Add a point A to E such that Ea is compact and (F;) is extended
to a probability transition semigroup on Fx. Any function f on E may be

always viewed as a function on Fa by defining f(A) = 0. In this way
Cou(B) = {f € C(Ea) : (A) = 0}.

Let X = (X,,P*) be a realization of (P;) on Ex. For any non-negative
f € Cyu(E) and o > 0, the process (e"™U*f(X;) : t > 0) is a super-
martingale with respect to P* for each x € E. It follows that ¢t — U® f(X;)
has right and left limits P*-almost surely. We may take a countable subset D
of {U%f:a>0,f € Cy(Ea)} separating points in E. Since D is countable,
there exists Ny C Q such that P*(Ny) = 0 for all € F and for any g € D
and w € Ny, t — g(X;(w)) has right and left limits. From the facts that D
separates points in £ and any function in D is continuous, it follows that for
w & No, t — Xi(w) has right and left limits. Let Y = (Y;) is the right limit
process of X, namely
Yi(w) = 1sifﬁXt(”)’ t>0,w¢& No.

It suffices to show that Y is a version of X. Fix ¢t > 0 and s > 0. Take any

non-negative functions f, g € Cy(FE) and

E*(f(Xt)9(Xste)) = E*(f(X4) Psg(X3))
= Bi(fPsg)(z).

As s] 0, Xg4y — Y, P,g — g and hence we have

E“(f(Xy)9(Y2)) = P(fg)(x) = E"(f(X:)g(Xy)).



CHAPTER 1. RIGHT MARKOV PROCESSES 18

It follows from the monotone convergence theorem that for any continuous

function h > 0on E x E,
E*[h(Xe, Y1)] = E7[R( Xy, X))

and we have X; =Y, a.s.

Hence Y = (Y}) is a right continuous realization of (F;) and it is easy to
see that Y is a Borel right process, due to Theorem I.1.9 and the fact that
U f is continuous for any f € C(F). O

An important example of Feller semigroup is the convolution semigroup
on Euclidean space, whose right continuous realization is called a Lévy pro-

Cess.

Definition 1.2.3 A family of probability measures {v; : t > 0} on R? is
called a convolution semigroup if
(1) vy x vg = vy for any t, s > 0;

(2) vy — € weakly as t | 0 where ¢ is the point mass at 0.

Let {v;} be a convolution semigroup on R? and set P;(x, dy) = v;(dy —x).
Then (F;) is a Feller semigroup on R? and its right continuous realization is
called a Lévy process on R?. Actually many well-known Markov processes
such as Brownian motion, Poisson process, stable process, are Lévy processes.
The law of a Lévy process is determined by its convolution semigroup, which
is in turn determined by its so-called Lévy exponent.

Let 7, denote the characteristic function of v, which is bounded and con-
tinuous on RY. There exists a complex-valued continuous function ¢ on R4

such that

7, = exp(—ty), (1.17)
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and this ¢ determines {1} uniquely by the uniqueness of Fourier transform
and called the Lévy exponent of {11}. Obviously ¢(0) = 0 and it is well-

known that ¢ has the following representation: for x € RY,
pla) =ila,2) + 5 (5, 2) + 1 — ¢y +—y m(dy),  (1.18)
R

where a € R, S is a d x d non-negative definite symmetric matrix, and = is

a Radon measure on R¢\ {0} having the following integrability

2
Y
/Rd . L_ ”y‘zw(dy) < 00. (1.19)

The matrix S and measure 7 are uniquely determined. But the vector a
. e:0514-1 . . .
depends on the way we write (I.I8). Conversely given a function ¢ as in
e:0514-1
(T.18), there must be a unique convolution semigroup {v;} on R? such that
©:0514-2 , T . s
(T.T7) holds. This characterization is the famous Lévy-Khinchin formula,
which tells us that every character about a Lévy process may be retrieved
from its Lévy exponent.
It is easy to verify that Lévy exponent of Brownian motion is ¢(z) = %|z|?.

2
When 7 is a finite measure and

o) = [ (1= e)n(ay), (1.20)

the corresponding semigroup (resp., Lévy process) is called the compound
Poisson semigroup (resp., compound Poisson process). In this case, let A =
7(RY) and mp = A7'm. At each step, the process will stay freezing at a
position = for an exponentially distributed time with parameter A and then
jump to somewhere according to distribution my(- — x).

For a Lévy process X on R? with convolution semigroup {#;}, the Lebesgue

measure m is always an invariant measure for X, since it is easy to check that
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Jra m(dz)vy(A—z) = m(A) for any Borel subset A. X is called symmetric
if

v(—A) =1 (A) (1.21)
for any Borel subset A of R?. It can be seen that in this case
m(dx)v(dy — x) = m(dy)v(dz — y). (1.22)
Clearly X is symmetric if and only if its Lévy exponent ¢ is real, i.e.,

1

o(x) = E(Sx,x) +/ (1 — cos(z,y))m(dy), = € R% (1.23)
Rd

Theorem 1.2.4 If X is symmetric, then any Radon invariant measure of

X is a multiple of Lebesgue measure if and only if its Lévy exponent ¢ has

unique zero.

1.3 Fine topology and balayage

The Blumenthal 0-1 law is easy to prove but very important.

Theorem 1.3.1 (Blumenthal) For any A € .%; and = € E, P*(A) is either

Zero or one.

Proof. For any probability g on E, there exists B € % such that P#*(A A
B) = 0. By Markov property, P*(6;'A A 0;'B) = 0. Since 6;'B = B,
P#(0, A A A) = 0. Then by Markov property again, for z € E,

Pe(4) = PA(AN6;14) = ETPX(4): 4] = (P7(4)

and it follows that P*(A) =0 or 1. O
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If Blumethal 0-1 law was only talking about a set in %, it would mean
nothing. Its importance is due to the fact that %, is much richer than .Z?.

Before we go any further we should answer a question: for what kind of
subset B of E, the hitting time T is a stopping time for the augmented
filtration (%#;)? Let’s start from two basic results. Given a filtration (.#;)
and a measurable space (5, .7), an S-valued stochastic process (Y;) is (.#;)-
progressively measurable if for any ¢ > 0, (s,w) — Ys(w) is Z([0,t]) x
M| S -measurable.

Exercise 1.5 If Y is (.#;)-progressively measurable and ¢ : S — R is Borel

measurable, then so is t — @oY;.

For a set A C F, the hitting time and entrance time for A of X are
Ty=inf{t >0: X; € A} and Dy = inf{t > 0: X; € A}. It is easy to see
that T4 is a terminal time, i.e., almost surely Tyo8; +t = Ty on {T4 > t} for
all ¢ > 0.

Lemma 1.3.2 (1) A right continuous and adapted process is progressively
measurable. Therefore (X}) is progressively measurable. (2) If the filtration
satisfies the usual condition, the hitting time of a real progressively measur-

able process for a Borel set is a stopping time.

For f € S% t — f(X;) is right continuous and so f is optional. Let &*

denote the o-algebra generated by all excessive functions. Then
ECECECE (1.24)

Theorem 1.3.3 If A is nearly optional, then the hitting time T4 is an (%;)-
stopping time.

Proof. By the definition and lemma above, T4 is an (#}')-stopping time for

any probability x4 on E and hence an (%;)-stopping time. O
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For any A € &, since {T4 = 0} € %y, P*(Tx = 0) = 0 or 1 for each
x € FE, by Blumenthal 0-1 law. If it is zero, we say x is regular for A or
otherwise x is irregular for A. Let A" denote the set of regular points for
A. A nearly optional subset G of E is called finely open, if for any = € G,
P*(Tge = 0) = 0 or equivalently x is irregular for G¢. Intuitively G is finely
open if X, starting from any point in GG, will not leave G immediately. It is
routine to show that the set of finely open subsets in E' is a topology, which
we call the fine topology of X on E. Since X is right continuous, any
point in an open subset G will not leave G immediately and hence an open
set is finely open, namely, the fine topology is really finer than the original
topology on E. The fine topology carries some intrinsic characteristics of the
process and is usually hard to trace. The following theorem presents a lot of

information on fine topology.

Theorem 1.3.4 (1) If f is nearly optional, then f is finely continuous if and
only if ¢t — f(X;) is right continuous. (2) If f € S*, f is finely continuous.
(3) For a > 0, the fine topology is generated by S¢.

Exercise 1.6 For A € &"°, A" is finely closed and AU A" is the fine closure
of A.

Theorem 1.3.5 For A € £°, X1, € AU A" on {T4 < oo} almost surely.

Proof. By definition of Ty, {Xr, & A} C {Tacr, = 0}. Hence for any
x € E, using strong Markov property
P (Xp, € AUA", Ty < 00)
= PI(XTA € AU AT,TAOHTA = O,TA < OO)
= E*[P*"a(Ty = 0); X7, € AUA", Ty < 00] =0,

since P*74(Ty = 0) = 0 for Xy, & A". O
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For an (.%#;)-stopping time T, define a-balayage kernel
Pz, A) =E" [e*"14(X7)], v € E, A€ & (1.25)
When a = 0, this means Pr(z, A) = P*(Xp € A,T < 00). If T' = T}y, write
P as Pg.

Lemma 1.3.6 For g € &7,

(e}

PrU%g(x) = E® {/
T
Proof. By strong Markov property,
PeU%g(z) = E* |e “TEXT (/ eatg(Xt)dt)}
L 0
= E* / eI+ f(XHT)dt}

LJ O

e /T et f(Xt)dt] |

e_atg(Xt)dt} . (1.26)

]

Lemma 1.3.7 (1) If f € S%, then P2f < f. (2) If, in addition, T is a
hitting time, then P2 (S*) C S°.

Proof. (1) Assume that f(z) < oo. Since t — e * f(X;) is a non-negative
super-martingale, we then apply the Doob’s sampling theorem to get the
conclusion.

(2) By Markov property, we have
PPy = PtiTOGt‘

For T is a terminal time, 70, +¢ > T for all t > 0 a.s. Hence if f = U%g, it
is obvious that PfU®g is a-super-median. 7' is a hitting time so 70, +t | T
as t | 0 and then

Pr(U*&T) C S°.



CHAPTER 1. RIGHT MARKOV PROCESSES 24

1:100428-2 1:100428-1
Finally the conclusion follows from Lemma [T.1.6] 3:i and Lemma [T.T.5] 3 ). [

Definition 1.3.8 Let A € &°. It is polar if P*(T4 < 00) =0 for all x € E,
thin if P*(T4y > 0) =1 for all x € E and semi-polar if A is contained in a
countable union of thin sets. A universally measurable subset A is potential
zero if U(x, A) = 0 for all x € E. The definition may apply to any subset if

it is contained in a set with the respective property.

Intuitively, almost surely, X never meets a polar set and amount of time
in a set of potential zero has Lebesgue measure zero. Therefore a polar
set is potential zero. The following theorem asserts that semipolar sets are

somewhat between.
Theorem 1.3.9 If A is a semipolar set, then almost surely {¢t : X; € A} is

at most countable.

Proof. Assume that Aisthin. Let 0 < a < 1,and B={z € A: Pi1(z) < a}.
Set Ty = Tpg, Tyy1 = T, + T1007,. It is enough to show that 7,, — oo a.s.

' o t:100428-3
Since B is thin, B" = and X7, € B for T;, < co by Theorem [[.3.5. By strong
Markov property

E“fe T+1] = E*[e " (e ")y, ]
— E® [G_T" EXTn (e_TB)]
< Ee T EY ()
< aE*[e™],
and hence E®[e™T"] — 0, i.e., T, = 00 a.s. O

Hence it is evident that a semipolar set is potential zero.

Theorem 1.3.10 If A is nearly optional, then A\ A" is semipolar.
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Proof. P}1 is l-excessive and finely continuous. Let
A, ={r e A: Pil(z) <1—1/n}.

Then A\ A" = J,, A, and it suffices to verify that A, is thin. For any « € E,
if Pil(x) <1, then P} 1 <lora ¢ Al. If Py1(z) = 1, then z is in the
finely open set {Pi1(z) > 1 — 1/n}, which is disjoint with A, and hence
x ¢ A;. This means that A, is thin. O

Exercise 1.7 If f is a-super-median, define f = lim, e **P;f. Show that
fese f>fand {f > f} is potential zero.

Definition 1.3.11 X or (FP,) is called transient if U is proper, i.e., there
exists a strictly positive g € &* such that Ug < oo.

Since O-potential of the semigroup (e”**F;) is U® which is proper when

a >0, (e7*P,) is always transient when a > 0.

Lemma 1.3.12 If X is transient, then there exists strictly positive f such

that U f < 1.

Proof. Let g be as in the definition. Set

1

for n > 1. Then A, 1 E. Clearly 14, < ng and A, is contained in a finely
t:100428-3
closed set {Ug < n}. By Theorem T.3.5, X7, € {Ug < n} for Ty, < oo.

A

Now

o0

Uly, (z) = E / 1a, (X,)dt
Ta,

= PAnUlAn (l‘)
<nP4,Ug(x)
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<nE*'[Ug(Xr, ), Ta, < o00] < n?.

Then write f =Y 27"n"?1,, which is strictly positive and Uf(z) < 1. O

It is shown in the proof that there exists A, € &* such that A, T E and
each Ul,, is bounded.

Theorem 1.3.13 If X is transient and f € S, then there exist g, € &7} such
that Ug, 1 f and both g, and Ug, are abounded for each n.

Proof. Take A, as above. Set

Then Uh,, is bounded, Uh,, T +o0 and

t t t+%
/ Psgn,kds = k(/ Psfnds - / Psfnds)
0 0 -

1
k

: ok
= k(/ P, f,ds — / P, f,ds).
0 ¢

Since P, f, < P,U,h = ftoo Psh,ds | 0 as t 1 oo, Ug, increases with both n
and k. Hence Ug,, T f as n 1 oo. [

1.4 Excessive measures

A o-finite measure ¢ is called a-excessive measure for X if for any ¢t > 0,
EPY = e ¢P, < & Note that any o-finite measure £ on (F, &) may be
extended to a measure on &* uniquely. By a result of Meyer, it follows
automatically that £P* 1 & as t | 0. The notion of excessive measures is
dual to that of excessive functions. The set of a-excessive measures for X

is denoted by Exc® or Exc®(X) if necessary. Write Exc’ as Exc. If € is a
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o-finite measure and P, = £ for all ¢ > 0, £ is called invariant for X. For
example, Lebesgue measure is always invariant for Lévy processes. If u is a

measure and pU® is o-finite, then pU% € Exc® which is called a potential.

Exercise 1.8 Let X be the translation to the right on R with speed one.
Verify that for any a > 0, £(dz) = e~ **dz is invariant for (e~ P,).

Lemma 1.4.1 (1) ¢ € Exc® if and only if B¢U*? < ¢ for any 3 > 0.

(2) If &, € Exc® increases to a o-finite measure, then lim, &, € Exc®.

(3) If &,m € Exc®, £ An € Exc®.

(4) If 0 < o < B, then Exc® C Exc’.

Theorem 1.4.2 If X is transient and ¢ € Exc, then there exist measures

tn such that p,U 1 €.

f:t ient
Proof. The proof is similar to Theorem 313 Lot A, T E with £(A4,,) < oc.
Fix strictly positive g € &* with Ug < 1. Set p,, = nly, -£. Then pu, is finite

and for any a > 0,
apnU({g > a}) < pUg < pn(1) < o0,

which implies p, U is o-finite. Let 1, = p,U A . We claim 7, T &. In fact,
let &, = fol(l 4, - §)Pdt. Then &, increases to fol £ P,dt which is equivalent
to &. Denote by f, the density of &, with respect to £ and it follows that
lim, f, > 0 a.e. . Hence the density of (n,) A with respect to £ is (nf,) Al

which increases to 1 a.e. £ and this implies that 7, 1 £ since

£ > o = / (nla, - )Pt A€ = (nEn) A €.

Define now v,, = n(n, — Py/n7y,) and

1/k 1
Mo = k/ N Ppdt :/ M Py 1 dt.
0



CHAPTER 1. RIGHT MARKOV PROCESSES 28

Then v,U = 1n,,. Clearly (n,) increases with n and k since 7, is an
increasing sequence of excessive measures. Hence v,U is increasing and

v,U < n, <& Moreover for each k£ > 1,

1 1
lim v, U = lim/ N Py dt > lim/ NPy jndt = 1.
mJo mJo
Combining the fact that n, 1 &, it leads to the conclusion. n

In 70’s Meyer introduced energy functional for ¢ € Exc and f € S which

generalizes the notion of energy in classical potential theory.

Definition 1.4.3 The energy functional L on Exc x S is defined by

L(&, f) = sup{u(f) : pU < &} (1.27)

We assume that X is transient when discussing energy functional for

convenience. It is trivial that and L(uU, f) = p(f) and if & < &, L(&,-) <

L(€27 )

Lemma 1.4.4 Let £ € Excand f € S. If U 1 &, then L(p,U, f) 1 L(&, f).
Proof. 1t is clear that L(p,U, f) is increasing and we need to check lim,, L(p,,U, f) >

f:t ient
L(&, f). By Theorem [3.13 there exist gn such that Ug, 1 f. Hence for any
pU < ¢,

u(f) =limu(Ug,) < limé(g,) = lim 111?1 1eU(gn)

= limlim U (gn) = lim . (f) = lim LU, f).

Proposition 1.4.5 Assume that £ € Exc and f € S.
(1) If fi < fo ace. & then L(E, f1) < L(E, fa).

(2) I fu T fae. & L(E, fo) T L(E, S).
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(3) L& US) =¢&(f)-
(4) If & 1 &, then L(&, f) T L(S, f)-
(5) If L(&, f) =0, then f =0 a.e. &

Proof. (1) The set A = {f1 > fa} is finely open and &-null. For any puU <€,
nU(A) = 0 implies that pu(A) =0, or f; < fy a.e. p. Hence p(f1) < u(f2),
e, L& f1) < L, f2). (2) If f, T f, then take p,U T & and we have

= limpy,(f) = lim L(weU, f) = L(E, f).

(3) Take p, U 1 & Then L(E,Uf) = lim, u,(Uf) = lim,(u,U)f = &(f).
(4) Tt suffices to show that lim,, L(&,, f) > L(§, f). Take any puU < ¢ and
Ug, 1T f. Then

p(f) = lim p(Ugy) < limé(gy)
= lim liin &k(gn) = lim liin L(&,Ugn)

= h,gnL(fk,f)-

(5) Take Ugy, 1 f. By (3), £(gn) = 0. Since afU* 1 £, EU(gn) = limayo EUY(gn) =
0 and hence £(f) = 0. O

Corollary 1.4.6 Let £ € Exc and f € S. (1) If £ is purely excessive, i.e.,
EP, L0 ast 1 oo, then

LES) = limt €= P, ) = T al6—agU® 1), (128)
.(2)If f<ooand Pf [ 0ast?T +oo,

L&) =limt™ (€. ] = Pif) = lm a(6,f —aUf).  (1:20)
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Proof. For (1), define p; = t71(¢ — €P,). Then it is routine to check that
, o :0501-1
wU 1 € as t | 0 and the conclusion follows from Proposition .ZLSILZH. The

other statements are proved similarly. O]

It is seen from above that formally

where L, on the right, is the infinitesimal generator of (P;), which is exactly
what the energy means classically.

Given a o-finite measure m on (F, &™). Define P™ as
P (H) = / P*(H)m(dz), H € Fo, (1.30)
E

The process X still has strong Markov property with respect to measure P™:
for any stopping time 7" and non-negative random variable Y on (2, %), it

holds P™-a.s., on {T' < oo},
E™[Y o] = EXT[Y]. (1.31)

Fix m € Exc. A nearly optional set A is called m-polar if P (T4 < o0) =
0, or P*(Ty < o0) = 0 for m-almost all z € E. A polar set is certainly

m-polar. In general, we may define the capacity of A by
['(A) = L(m, Pal). (1.32)

It is clear that A is m-polar if and only if I'(A) = 0. Moreover we have the

following properties.

Proposition 1.4.7 Let A, B, B, € &™°.
(1) If A C B, then I'(A) < T'(B).

(2) If B, 1 B, then I'(B,,) T ['(B).
B)T(AUB)+T'(ANB) <T'(A)+T'(B).
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Lemma 1.4.8 Let A € & be finely open. If m(A) = 0, then A is m-polar.

Proof. Since m € Exc, m(A) = 0 implies that mU(A) = 0, i.e., P™-a.e., the
amount of time that X stays in A has Lebesgue measure zero and it can be
seen that X could never meet A, because, roughly speaking, when A is finely
open and X is right continuous, a sample path of X meeting A would stay
in A for a time interval.

A rigorous proof goes this way. Let g(z) = 1 — E*(e~74%), which is zero
on A° and strictly positive on A. Then g is finely continuous and ¢ — g(X})
is right continuous. If T4 < oo, then there exists ¢ > 0 such that g(X;) > 0.
The right continuity implies that g(X,) > 0 for s € [t,t + 0) with some
6 > 0 and hence [~ g(X;)dt > 0. However E™ [ g(X;)dt < mU(A) = 0
and therefore P (T4 < c0) = 0. O

1.5 Additive functionals and Revuz measures

Additive functionals play an important role in theory of Markov processes.
If B = (B,) is a standard Brownian motion on R% and ¢ is a bounded Borel
function on RY, it is well-known that the function u = wu(t,r) satisfying

Schrodinger equation with initial condition

ou 1
E = EAU, — gbu,

u(0,z) = f(x) (1.33)

may be written as

ult,z) — E° < F(B,) exp <— /0 t(b(Bs)ds)) | (1.34)
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which is called the Feynman-Kac formula. What we interested here is the

t
/ o(Bs)ds
0
which has additivity

( /0 S qb(Bu)du) 0 = /0 " O(Bucby)du

_ /0 " $(Buss)du = /t " (B
:/OHS ¢(Bu)du—/0t¢(3u)du

path integral

for all t,s > 0 a.s.

Now we give the definition of additive functionals. Let
X = (Q, %, F#, X,,0,,P%)

be a right process on E with transition semigroup (F;).

Definition 1.5.1 A non-negative right continuous process A = (A;) is called

a raw additive functional, or simply RAF, of X if almost surely
Apps = Ay + Aol

holds for all ¢, s > 0. A raw additive functional is an additive functional, or
simply AF, if it is adapted. A continuous additive functional of X is called
a PCAF simply.

By way of perfection, the additivity may be weakened: for any ¢,s > 0,
it holds almost surely

At+s == At + Asoet.

Clearly a raw additive functional A is always increasing, Ag = 0 and so

we denote by dA; the measure induced by t +— A;. For a non-negative
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measurable function f on F,

tH/ﬁﬂXJMs
0

is still a raw additive functional of X and denoted by fxA. If A is an additive

functional, so is f * A.

Lemma 1.5.2 Let m € Exc and A a raw additive functional of X. Define

o(t) = E"(A,), t > 0.

Then ¢(0) = 0, ¢ is increasing and concave. Furthermore ¢ — @ decreases
and
t o0
tim 21 i, gEm / e P4 A, (1.35)
tlo t Btoo 0

Proof. 1t is obvious that ¢(0) = 0 and ¢ is increasing. Then ¢ has right and
left limits at any point. By Markov property, for ¢,u > 0

p(t+u) = E™(Ara) = (1) + E™(Auoby) = (1) + E™ (Au)

and then o(t+u) < @(t) + p(u). It follows that if ¢ is infinite at some point
to > 0 then ¢ is infinite identically on (0, 00) since ny(to/n) > ¢(ty) and ¢

is increasing. We may assume that ¢ is finite on [0, 00). In this case we have

ot +u) —p(t) < o(s +u) —p(s) (1.36)
for t > s > 0 and u > 0. Indeed, by Markov property, we have
Pt +u) —p(t) = E™(Appu — Ar)
= E" [(Agu — Ag)ols—]
= E™ (A — Ay)
< BE"(Aspu — As) = ols +u) — ¢(s).
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An easy consequence is

ths) o)+ ol

5 5 (1.37)

o(

for t,5s > 0. For t > 0 and € > 0, 2¢(t —¢) > p(z+¢) + ¢(z — 3¢) and hence
©(t—) > ¢(t+). This implies that ¢ is continuous. Therefore ¢ is concave
and t — @ decreases.

It is easy to verify that ¢ is Lipshitz continuous on (4, +oc) for any
d > 0. Let ¢’ be the right hand derivative of ¢. Then it is right continuous

and decreasing. Now we have

BE™ /0 h e PtdA, = / h e Pldp(t)
e
= [ ervasmar

and hence limgye SE™ [7 eP'd A, 1 ¢/(0). O

Applying this lemma, for any non-negative measurable function f on E,

2= ( / t f(Xs>dAs>

is increasing as t decreases. Write its limit as ¢ | 0 as p'y(f), i.e.,

pu(f) = hm / f(Xs)dAs = sup — Em/ f(X (1.38)

>0
which indicates its dependence on A, m and also X of course, though it is
not shown on the notation. It can be seen that p’} is a measure on E and
called the Revuz measure (or characteristic measure) of A with respect to m
computed against X, or simply Revuz measure of A if no confusion will be
caused. Obviously a Revuz measure will not charge any m-polar set and the

Revuz measure of a PCAF will not charge any m-semipolar set.
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Clearly A; =t is a trivial additive functional for any process. Then
t t
Em/ f(Xs)ds = / mPs(f)ds.
0 0
Since mP, T mas s | 0,
1 t
L6 [ st
0

ast | 0, ie., its Revuz measure is m itself. Another easy consequence is that

for a non-negative measurable g > 0 on F,
Pogia =9 P4 (1.39)
Introduce a-potential of A by
Usif(z) =FE" /00 e f(Xy)dA, a>0,f € &5 (1.40)
0

We have similarly

Uy=Us+ (o —y)UUY (1.41) |e:resolvent?
for a > v > 0. If A is a raw additive functional of X, we have

Pevifo) =g | ([T e e, ) o)

— E" ( /t " e f(Xu)dAu)

and it can be seen that U{f € S®.

Lemma 1.5.3 If U € Exc and A is a raw additive functional, then

P = pUa.
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Proof. Fix a measurable function f > 0 on E and we have by Fubini’s

theorem
U Lo [
1 — lim —EH
Pa (f) =1lim B /Of(X dA
1 t
:1,3{51; u(dx)/U(x,dy)Ey/ f(Xs)dA
= lim — E”“/ (/f dA)onu
AV
_ u
lgf(l)l E / du / f(X
— it (s —
ltli%ltE /0 (s — (s — 1)) f(X,)dA,.
Then the monotone convergence theorem gives the conclusion. O]

Theorem 1.5.4 If X is transient,

pA(f) = L(m,Uaf). (1.42)

Proof. Since X is transient, there exists a sequence of potentials {x,U } which
1:0516-1 :0501-1
increases to m. By Lemma [1.5:3 and Proposition i.Z[.BILZIi, we have

P (f) = lim Pt (f) = lim i, Ua f = lim L(pnU, Uaf) = L(m, Uaf).
That completes the proof. O

For a > 0, the process corresponding the transition semigroup (P?) is
called a-subprocess and denoted by X¢, which is always transient. A raw
additive functional A of X is also a raw additive functional of X®. We may
compute the Revuz measure of A with respect to m € Exc C Exc® against

X* and denote it by p'}"“
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Exercise 1.9 If A is a RAF of X, then A is also a RAF of X“ and

m,o : 1 m ! —QSs
P (f) —ltlg]l;E /0 e” v f(X)dAs.
Therefore p} =1 lim, o p'y .

It is then obvious that

p*(f) = L*(m, U4 f), (1.43)
where L® is the energy functional of X*.
Lemma 1.5.5 The Revuz measure p’y™* does not depend on a > 0 and
therefore p’\"* = p'y.
Proof. Let a > v > 0. Then by the resolvent equation, we have

L*(m,U%f) = m(f) = L(m,U"f)
= L"(m,U%f + (a —7)U"U*f)

for non-negative and measurable f on E. If h € S, there exists a sequence of

potentials U f,, increasing to h and hence it follows that h+ (a—~)U"h € S7

and

L*(m,h) = L"(m,h+ (o —v)U"h). (1.44)
: 1 t2 : 2
Then by the resolvent equation (el AT ioar‘{aenp ugging UG f € S in (el .ZIezine)f we

have the conclusion. O

1.6 Dual processes

Suppose that X = (X;, P*) and X = ()A(, I/D\m) are two right Markov processes
on E with transition semigroups (FP;) and (ﬁt) respectively. Let m be a o-
finite measure on £. We may assume that both are defined on the canonical

space of right continuous paths on E.
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Definition 1.6.1 The processes X and X are called dual relative to m if

[ s@) Pt @mids) = [ 1) Pglaymido) (1.45)
for non-negative measurable functions f,g on (E, &™).

Clearly in this case m must be excessive for both X and X and if h €

S(X), then h-m € Exc(X). Naturally we have measures P™ and P™:
P = / P*m(dz), P™ = / Pm(dfz). (1.46)
E E
Define the reversal operator v; on {t < (}:
(s) = wit — ), s € [0,1],
i.e., XSO’}/t = Xt—s-
l:reverse| Lemma 1.6. 1S a &, -measurable non-negative random variable, then
L 1.6.2 If Yisa % bl i d iable, th
E™(Yoyt < () =E™(Y;t < (). (1.47)
Proof. By the monotone class theorem, it suffices to verify for
Y = fi(Xy) - fu(Xe),

:dualit
where 0 = t; < --- < t,, = t. The equation (el A5) 15 équivalent to m(dz) P(x, dy) =
m(dy)ﬁt(y, dz). Hence

E™(Yoy) = E™[fu(Xo) fro1( Xt —tny) - f2(Xp—tn) f1(X0)]
_ / Fuln) - folaen)m(den) Py, (@, dan_s) - -~ Py (2, day)
- / Falwn) -+ Fu() Pty s (B ) -+ By (1, dag)m(day)

= E"(A(X0) fa(X,) -+ ful(X0))
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The following theorem is due to J.B.Walsh [?].

Theorem 1.6.3 P™-a.e. X = (X;) has left limits for t € (0,¢). If f €
S(X®), then P™-a.s., t — f(X,_) is left continuous.

Proof. Let X|g denote the process {X; : ¢ > 0 rational}. Fix a rational
t > 0. The event

Ay = {X|g has left limits at alls € (0,¢),t < ¢}
is measurable with respect to .Z?. Clearly if t < (,
71 (A;) = {X|q has right limits at alls € (0,t),t < (}. (1.48)

1: ~
By Lemma I.Sr?ZYerPs”e”(Af) = P™(y71Af) and it follows that

p (U Ag) =pm (U %IA§> = 0.
teQ teQ

This means that P-a.e., X|g has left limits for ¢ < ¢ and, due to the right
continuity of X, X has left limits for ¢ < (. The second assertion will be

proved later. O

Moreover ((7 f)-m = (f -m)U by duality for measurable f > 0. Note

that X and X are mutually dual and so the dual statement of any assertion

~

also holds. Define the energy functional of X on S(X) x S(X)
L(h,h) = L(h-m,h), h € S(X),h € S(X), (1.49)

and L the energy functional of X , and L for dual X* and Xe similarly.

Note that we use the same L for two kinds of energy functionals.

Lemma 1.6.4 If X is transient, then

~ ~ ~

Lo(h, h) = L°(h, 1) (1.50)

for h € S(X) and h € S(X),
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Proof. Let h = U f with measurable f > 0. Then we have

L) = [ Fa)ham(dr)

=L((f- m)ﬁ E)
=L(Uf-m,h).
Now for any h € S(X), we may take a sequence U f,, of potentials increasing
to h and it holds
L(h, U f) = L(U fo, h).
:0501-1
Let n go to infinity and applying Proposition i.ZI.BiLZHZL) we get to the con-

clusion. O

We now prove the useful Revuz formula.

Theorem 1.6.5 Let A be a RAF of X and A a RAF of X. Then

/E F@)USg(x)o(de) = /E 9() T ()3 (). (1.51)



Chapter 2

Potential analysis of

multiplicative functionals

2.1 Multiplicative functionals

Definition 2.1.1 A right continuous adapted stochastic process M = (M)

valued in [0, 1] on Q is called a multiplicative functional of X if almost surely
Mt+s == Mt . Msoet, t, S Z 0. (21)
Two trivial examples of multiplicative functionals are
t
M; = exp (—/ f(Xs)d5> , [ >0;
0
My = Lger,y,

where T4 is a hitting time. Actually if 7" is a terminal and stopping time,
then M, = 1.7y is a mutiplicative functional. On the other hands, if A is

an AF, then its usual exponential M, = e~ is a multiplicative functional.

41
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Given a multiplicative functional M. Clearly M is decreasing and M, =

Mg, ie., My =0 or 1 almost surely. If My = 0, M is identically 0. Let

Ey={x€ E:P*(My=1)=1},
SM = lnf{t . Mt = O}

The set E,; is called the set permanent points for M and Sy, the life time
of M. If Sy > (, then we say M never vanishes.



Chapter 3
Dirichlet forms

In this part we study the analytic aspect of Markov semigroups and their
associated Markov processes. We outline the beautiful theory of Markov
semigroups, which is the natural product by combining Hille-Yosida’s theory
of one-parameter semigroups with the Markov property.

We begin with a short summary of Hille-Yosida’s theory of semigroups
on Banach spaces, which is necessary for the study of Markov semigroups.
We then present a few special features about symmetric Markov semigroups

and their associated Dirichlet spaces.

3.1 Contraction semigroups and infinitesimal
generators

Recall that a time-homogenous Markov chain (X;):;>o on a discrete state

space M is described through its transition probability

pij(t) = P(Xt = j‘Xo = 'l)

43
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The transition matrix P(t) = (p;;(t)) satisfies the Chapman-Kolmogorov
equation
pij(s +1) = Z Pik(8)pr;(t) for any s,t>0.
keM

The transition matrix (p;;(¢)) allows us to define a linear operator P, on the
space Cy(M) of bounded (continuous) functions on M by

(PS) (@) =>_ fGp(t) Vi€ M.

jeM

If Cy(M) is endowed with the supremum norm
I/l =sup[f@)] V[ e (M)
ieM

then C, (M) is a Banach space, and each linear operator P, : Cp(M) — Cy(M)
is a contraction || P.f]| < ||f|| for any f € Cy(M). The Chapman-Kolmogorov
equation implies that (P,);~¢ is a semigroup on Cy(M), i.e. Pi(Psf) = Ppisf.
It is thus not surprising that the theory of 1-parameter semigroups plays a
fundamental role in the theory of Markov processes.

Let now B be a (real or complex) Banach space with a norm || -||. Typical
examples are LP-spaces on o-finite measure spaces. A linear operator T :
B — B is bounded if there is a non-negative constant C' such that ||7'(x)|| <
C||z|| for any z € B. In this case, the least C' > 0 such that the previous
statement is true is called the norm of T', denoted by ||T'||. A basic fact in
functional analysis is that a linear operator is continuous if and only if it
is bounded. For simplicity, if no confusion may arises, 7'(x) will be simply
written as T'z.

A linear operator T : B — B is called a contraction if ||T|| < 1.

A one-parameter family (P;):>o of bounded linear operators P, : B — B

is a semigroup (of linear operators) on B, if
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1. By = I the identity operator on B,

2. (P)>o satisfies the semigroup property: P,y = P,P; for every s,
t > 0, where P,P; is the composition of operators, that is, P,Ps(f) =

P(Ps(f))-
A semigroup (P;)i>o is strongly continuous if
lti%l Px=x foreveryxe B .

A semigroup (F;)¢>o is a semigroup of contractions (or called contraction
semigroup) if each P is a contraction on B, that is, || 2] < 1.
If (P;)>0 is a semigroup on B, then its infinitesimal generator (or simply
generator) is the (unbounded) linear operator (L, D(L)) defined by
Lz = lim1 (Px — x)
tl0 t

where x € D(L), and
D(L) = €B:li 1(P ) exist
=<z Hlim > (P — ) exists .

The following theorem summarizes the basic properties of the infinitesi-

mal generator of a semigroup, the proofs leave for the reader as an exercise.

Theorem 3.1.1 Let (P;):>0 be a strongly continuous semigroup on Banach
space B, and let L be its infinitesimal generator with domain D(L).
1) The map t — P,z is uniformly continuous for every x € B, and
1 [tth

limE (Pyx)ds = Bx VYt >0, z € B. (3.1)

h10 :

Moreover, fot (Psx)ds € D(L) for t > 0, z € B, and

t
L/ (Psx)ds = Px — o .
0
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2) If x € D(L), so is Pz,

%ptx — L(Pax) = P(La) (3.2)

and

t
Px — Px = / (P,Lx)du

_ /: (LPyx)du = L (/t (Po) du) .

As a consequence, D(L) is dense in B. Therefore the infinitesimal gen-
erator L of a strongly continuous semigroup on a Banach space B is densely
defined linear operator on B, each P; leaves D(L) invariant, L commutates
with P, and for any x € B the integral fot (Psz)ds (for t > 0) is an element
in D(L).

Generally, the infinitesimal generator L of a strongly continuous semi-
group on a Banach space B is unbounded, and in general D(L) # B. To
further investigate the properties of the densely defined linear operator L,

we need the following

Definition 3.1.2 The graph of a densely defined linear operator (7', D(T'))

on a Banach space B is
G(T)={(z,Tx) :x € D(T)}

which is a subset of the product space B x B (endowed with norm ||(z,y)| =
llz]| + |ly||). T is called a closed operator if G(T) is a closed subset of B x B
(and thus G(T) itself is a Banach space). In other words, T is closed if for
every sequence {x, } of D(T') such that z,, — x and T'xz,, — y, then = € D(T)
and T'x = y.

Proposition 3.1.3 The infinitesimal generator (L, D(L)) of a strongly con-

tinuous contraction semigroup (P;);>¢ is a closed operator.
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Proof. Suppose =, € D(L) — z and Lz, — y. We have to show that
x € D(L) and Lz = y. Since Lz, — y, {Lz,} is bounded in B and
|1 PsL(zy)|| < ||L(zp)[| < sup [[L(z,)||  forall s > 0.

A computation leads us to

Px — 1
ror_ (Pt( lim z,) — lim :vn>
t t n—00 n—00
1
= lim n (Pi(xn) — xp) (as P, is continuous)
n—oo
1 t
= lim - | PiL(x,)ds
n—oo t 0
1 t
=7 / lim P,L(z,)ds (Dominated Convergence)
0 n—oo
1 t
= - / Pyyds
t Jo
and
li ! (P, ) =1i ! tP d
im— (Px — ) = lim — yds =y .
tlo ¢ t tl0 t Jo y y
Therefore € D(L) and Lx = y. O

It is usually very difficult to determine the domain D(L) of the infinitesi-
mal generator L. Since the graph G(L) of L obviously determines L uniquely,
and since G(L) is a closed subspace of B x B, any dense subset of G(L) will
determine G(L) and therefore the closed linear operator L uniquely. A subset
C of D(L) is a core for a closed linear operator (L, D(L)) if {(x, Lx) : x € C'}
is dense in G(L). Precisely, for any x € D(L) there is a sequence {z,,} in C
such that x, — x and Lx,, — y for some y € B.

Another important concept associated with a strongly continuous con-
traction semigroup (P;):>o is the resolvent {Ry : A > 0} which we have met

in the previous chapter. By definition

R, = / e MPdt .
0
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Since for every x € B

each Ry (for A > 0) is a bounded linear operator of B with ||R,| < 1/A.
{Ry : A > 0} is a commutative family of bounded linear operators of B, and
the semigroup property of (FP;)i>o implies that {Ry : A > 0} satisfies the

resolvent equation:
Ry—R,=(pu—XR\R, Y\ u>0.

In particular, the region {Ryz : x € B} does not depend on A > 0.

Proposition 3.1.4 If (L, D(L)) is the infinitesimal generator of a strongly
continuous semigroup (FP;):>¢ of contractions of B, then for any A > 0, A\— L
(where A\ means the multiplier AI) is invertible and Ry = (A — L)~!. In

particular, for every A > 0 the region of R,
{Ryx:x € B} C D(L) .
Proof. We only need to show that for every x € B
(A=L)(Ryz) =x .
Firstly show that Ryz. In fact

Py (Ryx) — Ryz = Ph/ (Pax)d / e~
0 0

00 00
= / Pt+hx / e_)‘t Ptl'
0 0
00
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) h
= (eM—1) / e M (Pax)dt —/ e M (Pa)dt
h 0

and we then have

M

1 1 [~
lfib?ol 7 (Pn (Raz) — Ryx) = lfiilol ° ; /h e M (P)dt

N .
- 1}%1 E/o e M (Pa)dt
= A\Ryx —x .
Therefore Ryz € D(L) and
L(Ryz) = ARz —

which proves the claim. O

Therefore any real A > 0 belongs to the resolvent set of L. The resolvent
set p(L) of L is the set of all complex numbers A for which A — L is invertible,

i.e. (\[ — L)™' is a bounded linear operator on B. The family
{Ry=(—-L)"':xep(l)}

of bounded linear operators is also called the resolvent of L. The complement

of the resolvent set of L is called the spectrum of L denoted by o(L).

3.2 Hille-Yosida theorem

The necessary and sufficient condition for a given densely defined linear oper-
ator L (with domain D(L)) to be the infinitesimal generator of some strongly
continuous contraction semigroup (P;);>¢ is known as Hille-Yosida’s theory

of one-parameter semigroups.
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Theorem 3.2.1 (Hille-Yosida) A linear (unbounded) operator L is the in-
finitesimal generator of a strongly continuous semigroup of contractions on
a Banach space B if and only if

1) L is closed and the D(L) is dense in B, i.e. L is a densely defined
closed operator.

2) (0,400) C p(L) and |Ry|| < 1/ for every A > 0. In other words
A = L)z = All]

for every A > 0 and z € D(L).

We have proven the necessity of two conditions 1 and 2 (see Proposition
03
Bz%nd
(M —L) ' = / e MPdt VA >0,
0

namely, the resolvent of L is the Laplace transform of its semigroup (P;);>o.
We shall prepare a few lemmas before proceeding to prove Hille-Yosida

theorem.

, o h-ythi
Lemma 3.2.2 Let L satisfy the conditions 1 and 2 of Theorem }'3% , and
set Ry = (M — L)™', Then

lim ARz = x Ve e M .
A—00

Indeed, consider first those € D(L). Then
ARyr —x = LRy = RyLx

so that

ANz — || = || Ry L]

1
< XHL?UH
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as A — 0o. However D(L) is dense in B and |[ARyz|| < 1, therefore AR z —
x as A\ — oo for every x € B. That proves Claim 1.

For every A > 0, the Yosida approximation of L is defined as
Ly=ALRy = NRy, -\l .

Note L, is a bounded linear operator for each A\ > 0, and moreover, if
x € D(L) then
LR,\.CE = R)\LZB

and we have

h—fthl
Corollary 3.2.3 Let L satisfy the conditions 1 and 2 of Theorem 3.2.T.
Then

lim Lyz = Lz Vo e D(L) .

A—00

If T is a bounded linear operator on B, then its exponential e’ is given

by the formula
=1
ef(z)=>" H(T%)
k=0

which is again a bounded linear operator on B. Indeed

=1
le”]| < ;HHT’“H
=0

=1
LTIy
k=0

If S and T are two bounded linear operator and if 7" and S commute, then

In particular for a bounded linear operator T on a Banach space, then

(eT)iec is a commutative family of bounded linear operators, and

o0
le (2) — =] =
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<Y Tl
k=1~

= (71— 1) Ja]
so that
HetT—[HSGt”T“_l—>O ast — 0.
Moreover
eT(x) — N
; —Tz|| = Z —,(Tkx)
k=2
B i tk’Jrl ( Jt2 )H
- |
— (k+2)
2 — tF k
<HTIP | > (")
k=0

< TP M

Therefore (e'7);>¢ is a strongly semigroup of bounded linear operators with
infinitesimal generator 7.
Since L, is bounded for any A > 0, it is the infinitesimal generator of the

strongly continuous semigroup

X n
et = E —LY .
n!
n=0

Moreover, since AI and R, commute, so that e'r> =e et Bx and therefore
for any t > 0

o0

t2n

HetLAH < ef/\tz g)\ZnHR/\Hn
n=0 ’

_ 2
_ oMM IR

IN

1.
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Hence for each A > 0, (eﬂ“)tzo is a semigroup of contractions on B with
infinitesimal generator Ly. The next lemma shows that e/l* converges as
A — 0o. The limit shall be the strongly continuous semigroup of contractions

with infinitesimal generator L.

1:hyl
Lemma 3.2.4 Under the same assumption as in Lemma %.2.’2. For any
A >0

e a — era|| < t||Lyx — Ly .

Therefore, for every z € D(L), e®*x converges as A\ — oo uniformly in ¢ in

any bounded interval.

Let us prove this claim. Since all bounded linear operators ', etfn | L,

and L, commute with each other, consequently
bd
etL*a: . etL“x _ / el (estLAet(l—s)Lux) ds
o ds
t
= t/ esthret=o)lu ([ — [,x)ds |
0

together with the fact that [|et2|| < 1 and ||ef@=*)bx|| < 1, it follows thus
that

t
etz — it < o [ et (L - L) s
0
< t||Lyx — Lyz| .
Let x € D(L). Then

e x — era|| < t||Lyw — L,z

= t|Lax — La|| + 1| L — Lal]

cccOl1 | L .
by Corollary 13.2.3, it thus follows that ez converges as A — oo uniformly

in ¢ in any bounded interval. That proves the conclusion.



CHAPTER 3. DIRICHLET FORMS o4

We are now in a position to complete the proof of the Hille-Yosida theo-

-ythil
rem 3.2.1. Let

Pz = lim ety Vr e D(L),t>0. (3.3)

—00

Then ||Px|| < 1. Since D(L) is dense in B, so that limy_.e'®x exists
. 110001 . '

for every x € B. Moreover the convergence in (E%.B) is uniform in ¢ on any

bounded interval, so that

Prygr = lim o9 — lim o™ (e 2)
A—00 A—00

= lim e™ <lim eSL*x>

A—00 A—00
:Pt(Psx)
and

. . —T; : tLy _

lim || P — | = lim | lim (e () =) |
i . . tLy .
= |l lim lim (" (2) — @) |
=0.

Therefore (P;):>o is a strongly continuous semigroup of contractions on B.
Next we prove that L is the infinitesimal generator of (P;);>o. Let (A, D(A))

be the infinitesimal generator of (P;);>o. If € D(L) then

t
P —x = lim (e’ (z)—2) = lim [ " (Lyz)ds

A—00 A—o0 Jo
t t
= lim e**(Lyx)ds = lim e*(lim Lyz)ds
0 A—0oo 0 A0 A—00

t
= / P,(Lz)ds
0
and therefore € D(A) and Az = Lz. Since 1 belongs to the resolvent sets
both of A and L we therefore have

(I—A)D(L) = (I — L)D(L) = B
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so that

DA =(I-A)"'B=U-L)"'B
=D(L) .

Therefore D(A) = D(L) and L = A.
The contraction semigroup (P;);>o with infinitesimal generator L some-

times is denoted by e*’, although e is not necessarily given by power series.

Corollary 3.2.5 Let L be the infinitesimal generator of a strongly contin-
uous, contraction semigroup (P;);>¢o on a Banach space B, and let L), =

MRy — I (where Ry = (M — L)™') be the Yosida approximation of L. Then

Pz = lim ez
A—00

uniformly in ¢ on any bounded interval.

Corollary 3.2.6 Under the same assumption in the previous corollary. The
resolvent set p(L) O {\: ReA > 0} and
1
M—-L)7Y < =—
IO = L) < =
for any A such that such Re\ > 0.
Proof. If Re\ > 0 then
Ry = / e M(P)dt
0

is well defined bounded linear operator, which is (Al — L)~ O

3.3 Contraction semigroups on Hilbert spaces

In this sub-section we specialize our study to a class of strongly continuous

contraction semigroups of symmetric linear operators on a Hilbert space H.
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A bounded linear operator 7" on a (real) Hilbert space H is called a

symmetric operator if
(Tw,y) = (z,Ty)
where (x,y) is the inner product of H. The adjoint operator L* of a densely

defined linear operator L (with domain D(L)) on H is defined as the follow-
ing: x € D(L*) if

[(Ly, )| < Callyl|  for every y € D(L)

for some non-negative constant C,, and L*z is the unique element in H (F.

Riesz’s representation) such that
(Ly,x) = (y, L*x) for every y € D(L) .

L* is a closed linear operator on H. If L* = L, then L is called a self-adjoint
operator.

The fundamental tool in the study of self-adjoint operators is the spectral
decomposition theorem. To appreciate this theorem, let us investigate an
example which is in turn to be the general (function) model for self-adjoint
operators.

Let (©,.%, 1) be a finite measure space, and let H = L?(Q,.Z, ). If
¢ is a real-valued measurable function on €2, then we use T to denote the
multiplier operator

Tyx = ¢z for any v € H
and
D(Ty) ={x € H:¢x € L*(Q, F,n)} .

Then Ty is a self-adjoint operator on H, with o(T}) the essential range of
¢. We note that if ¢ is an indicator function of a measurable subset A, then

Ty, : L*(Q, F,u) — L*(A, Z,u) is a projection.
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Given a real-valued measurable function ¢ we associate it with a right-
continuous, increasing family {F) : A € R} of projections on H defined by

Ey=T,._,,- Obviously A — (E)z,z) is increasing so that
A= <E)\:B7 y>

is right-continuous and has finite variation. Moreover lim,_, ., F\ = 0 and

limy o Ey = I. If z € H such that ||z|| = 1, then
P, (dw) = (w)*pu(dw)
is a probability measure, and
(Eyx,z) = /X Lgenyzdp
= Py {¢(w) < A}

is the distribution function of ¢ under the probability measure P,. It is seen

that ¢ is square-integrable with respect to P, if and only if

E.|¢] = / 6P, — / 6P2du
X X
:/ Ad( By, 2) < 400

which implies that x € D(Ty) if and only if
/ NAd(Eyz, ) < 400 .
Moreover

| i) =B () - | op,

=/wwi
X
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and therefore
(Tyx, ) :/ M(E\z, ) .

o0

By the polarization identity, we thus have
(Torg) = [ M(Bary)

The last equality shows that T}, has a spectral decomposition

T, = / AE, = / AE,
—o0 a(Ty)

as A — E) increases only on the spectrum o(7y), and

D(T,) = {x : / NdA(Eyr,z) < —1—00} :
One of the main achievement in Functional Analysis is the following spec-

tral theorem, which claims that the above spectral decomposition holds for

any self-adjoint operator.

Theorem 3.3.1 Let L be a self-adjoint operator on a Hilbert space H.
1) The spectrum o(L) C R.
2) There is a right-continuous and increasing family {E), : A € R} of
projections in H such that
lim £y, =0 and lim Ey =1;

A——00 A—00

A — FE) increases only on o(L),

D(L) = {:z: € H: /_Z Nd(E\r, x) < +oo}

+00
L :/ A E)y :/ A E)
—o0 o(L)

and
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in the sense that

+00
(Lo y) = / M(Ext,y) Ve D(L) and y € H,

o0

where the right-hand side is the Riemann-Stieltjes integral.

A self-adjoint linear operator L is positive-definite if (Lz, x) > 0 for every

x € H. Such a self-adjoint operator possesses a spectral decomposition

+oo
L :/ AE)y .
0

Consider a self-adjoint linear operator L which is negative-definite, that

is, —L is positive-definite, and let —L have the spectral decomposition

—+00
—L= / A E)
0

+o00
L= / —AdE)y .
0

+o00
P, = / e MAE,
0

which is a self-adjoint operator, and

or equivalently

Define

+oo
|(Px,x)| < / e Md(E\x, )
0

+o0

< / d(E\z, x)
0

= [l=|* .

Therefore each P, is a contraction on H, hence (F;);>o is a strongly contin-
uous contraction semigroup of symmetric operators on H with infinitesimal
generator L. Conversely, it is obvious that the infinitesimal generator of a
strongly continuous contraction semigroup of symmetric linear operators on

a Hilbert space H is a negative-definite self-adjoint operator.
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Theorem 3.3.2 L is the infinitesimal generator of a strongly continuous
contraction semigroup of symmetric linear operators on a Hilbert space H if

and only if L is a negative-definite self-adjoint operator. If

+oo
L= / —\dE) (3.4) |egssu01
0

is the spectral decomposition of —L, then

“+oo
etL — / ef)\tdE)\
0

and for every a > 0

. “+o0 1
R, = — L) = dE) .
(o ) /0 a—+ A A

In general, if —L is a positive-definite self-adjoint linear operator on H
. L. eqgssul1 . .
with spectral decomposition (lB.EIi then for any continuous function f on
[0, +00), f(L) is a self-adjoint operator

fn = [ fendE

with domain

+o00
D(f(L)) = {m € H: i f(=N)2d(Eyz,2) < —l—oo} :

The most important for our propose is the square root of —L which can

be defined as

—+00

V=L = VAEy,

0
with domain

D(V-L)= {a: cH: /;OO M(Ey\z, z) < +oo} .
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v/ —L is a positive-definite, self-adjoint operator. Obviously D(L) C D(v/—L)

and

(=Lz,y) = (V/—Lx,v/—Ly) , Ve € D(L); y € D(v/—L)

Let (P;)t>o be the semigroup generated by L:

+o0
P = / e MdE,
0

and set

1 1
(5’(t)(x,x) = ;(I‘ - Ptl’,x) = ;

(I2l* = [ Pyol?) , t > 0,2 € H,
which is called an approximating form defined by (F;). Then
+o00
&Y = —/ (1—e ) d(Erz, ) .
0
Since

dl—e* e s—1+¢°

ds s 52
e —1—s
:—2—<O fOI'S>0,
s“e’

t — &Y (z, x) is decreasing and therefore

lim &Y (z, x) = sup &Y (x, x)
40 t>0

exists, which will be denoted by &(z, z) (< 400).

Theorem 3.3.3 Let L be a negative-definite self-adjoint operator on Hilbert

space H, and let P, =e'* be the semigroup generated by L. Then z €

D(v/—L) if and only if &(x,x) < +00. Moreover

IV=La|* = &(x,)

(3.6)
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for every x € D(v/—L). Similarly if we define an approximating form by

(R,) as

&W(z,y) = B(x — BRsw,y), v,y € H,
then D(v/—L) = {z € H : supy( &) (z,2) < oo} and

&(z,2) = |V-La|* = ﬁlggog[m(%x)
for every x € D(v/—L).
Proof. If x € D(y/—L) then

oo
/0 M(E\x, z) < +0o0 .

However

1—¢e%

S

<1 forall se€(0,+00)

so that by Lebesgue’s dominated convergence

1 ) ) +o00 1— e—2/\t
im — — = lim ———d(E
lim o (= = [ Pl?) /0 im — —d(E)z, 7)
+oo
= / A(E\z, )
0
= |V —La* .
On the other hand, if
liml (llz)|* = [| Pz)?) = supl +oo (1-— e‘”‘t) d(E\x, )
0 2t K =0 2t J, '
< +00,
then by Fatou’s lemma and the fact that 1_62;% > (0, we have

+o00 +o0 1 — e—2)\t
E = lim ———d(F
/0 )\d< )\x7$> /0 tli%l i < )\l',$>
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that is x € D(V—L). O

Corollary 3.3.4 Let L be a negative-definite self-adjoint operator L on
Hilbert space H, and let P, =e*’. Then & is lower semi-continuous on H,
that is

E(x,r) <lm, . &(x,,x,)

N—r 00
if z,, - xin H.

The lower semi-continuity follows from that & is the supremum of a family

of continuous functions

1
&(x,x) = sup — (||l — || Pxl?) -
>0 2t

Definition 3.3.5 The quadratic form (&, D(&)) associated with a negative-
definite self-adjoint operator L is defined by

&(r,y) = (V—Lx,V—=Ly) , w,y€D(&)

where

The main advantage by considering the quadratic form (&, D(&)) instead
of the (unbounded) self-adjoint operator L is that, as we have seen, & (x,x)

is well-defined for every x € H

R 1 2 2
&) = lim o (] = [P

and &(x, ) is finite if and only if z € D(&). The following proposition is
evident since y/—L is a closed operator.
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Proposition 3.3.6 Let L be a negative-definite self-adjoint operator on
Hilbert space H, and let (&, D(&)) be the quadratic form associated with L.
Define for z € D(&),a > 0,

a(r,2) = al|z[|* + &(z,2)
= of|z|]* + ||V —La|

Then D(&) is a Hilbert space with respect to &,.

We now define the concept of symmetric forms on a Hilbert space and
prove that a symmetric form corresponds to a strongly continuous contraction
resolvent, or equivalently a strongly continuous contraction semigroup and a

non-positive definite self-adjoint operator.

Definition 3.3.7 A densely defined bilinear form (&, D(&)) on H is called
a symmetric form on H if it is symmetric, non-negative definite and D(&) is

a Hilbert space with respect to the inner product &,.

Theorem 3.3.8 If (&, D(&)) is a symmetric form on H, then there exists
a unique strongly continuous symmetric contraction resolvent (R,,a > 0)

such that
Eu(Ra,y) = (r,y), o> 0,2 € H,y € D(&). (3.9)

Proof. Fix x € H and o« > 0. Then y — (z,y) is a bounded linear operator
on Hilbert space (D(&), &,) since
x x x| - ;
)| < vl =75 Ylle,,

where || - ||, = /&al:,-). By Riesz representation theorem, there exists a
unique element in D(&), denoted by R,x, such that

Eo(Rox,y) = (x,y), y € D(&). (3.10)
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Clearly it follows that
| Roz|* < €(Rat, Ratt) = (2, Roz) < ||| Raz]

and hence we have |aR.x| < |z|, ie., aR, is a contraction. Moreover
(Ra, > 0) is a strongly continuous symmetric contraction resovent on H.

In fact, taking « > 8 > 0 and z,y € H,

Ea(Raw,y) = (z,y) = Es(Rgw,y)
= &u(Rgz,y) + (B — a)(Rsz,y)
= fg}a(Rﬁ‘r + (5 - Oé)RaRﬁlC, y)
and it implies the resolvent equation

Ro— R+ (a— B)RaRs = 0. (3.11)

To verify the strong continuity, we prove the following inequality first. For

x € D(&),

a|aRyx — z|? < Eu(aRgx — x, aRx — 1)

= a(z,aRqr —x) + &(x,2) < & (2, x),

since, by contraction property, (x, «R,z) < (x,z). This implies aR,z — x

as @ — oo for x € D(&) and hence for z € H due to denseness. [

3.4 Markovian property and Dirichlet forms

In the previous section, we have proven that in any abstract Hilbert space,
there is essentially a one-to-one correspondence among strongly continu-
ous contraction semigroups, strongly continuous contraction resolvents, non-

positive definite self-adjoint operators and symmetric forms. However what
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we are really interested is a symmetric form on L? space with Markovian
property, which we call a Dirichlet form.
Let (E,&) be a measurable space with a o-finite measure m, and for

p=>1
LP(E;m) ={fe&: /E|f]pdm<oo}

with so-called LP-norm
1l = ([ 1am)"
E

Of course two functions are equal if they are equal m-a.e. Let (&, D(&)) be a
symmetric form on L?(E;m) with strongly continuous symmetric contraction
semigroup (F;), strongly continuous symmetric contraction resolvent (R,)
and infinitesimal generator (L, D(L)). Usually we use .# instead of D(&)
in this case. For two measurable functions u,v on E, v is called a normal

contraction of u if, for some version of u, v,

u(@)] < fo(2)], Vo € E;
u(z) = u(y)| < |v(z) —v(y)l, Yo,y € E.

Definition 3.4.1 A symmetric form (&,.%#) is called Markovian if any
normal contraction operates on &, more precisely, if v € % and v is a
normal contraction of u, then v € % and &(v,v) < &(u,u). A Markovian

symmetric form on L?(E;m) is called a Dirichlet form on L?(E;m).

For convenience, write ||u|l¢ = /& (u,u) for u € %, which is a semi-

norm.

Theorem 3.4.2 A Dirichlet form & on L?(E;m) possesses the following

properties:

(a) if w € F, then |u] € F and &(|ul,|u|) < &(u,u).
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(b) if u,v € .Z, thenu Av, uVv,uNl€.Z.

(c) if u,v € F NL®(E;m), then wv € .F and
V& (uv,u) < Jul o/ E(v,v) + [v] V& (u, ).

(d) ifu € # and u, = ((—n)Vu)An, then u,, € .# and u,, — v in & -norm.

(e) if u € F and ul® = u — ((—¢) Vu) Ae for e > 0, then u'® € .# and

u®) — u in &-norm as € | 0.

Proof. (a), then (b), is obvious since | - | is a normal contraction. For (c),
since |uf v + |v| v is a normal contraction of uv, it follows that uv € &
and ||uv|le < |||u] v+ |v|, ulls. Then by the triangle inequality, (c) holds.

(d) Clearly w, is a normal contraction of u and hence &(u,,u,) <

& (u,u).Then for any v € L*(E;m),
E1(Un, R1v) = (un,v) = (u,v) = &1(u, Ryv).

Since
E(BRsr — x, fRgx — x) = & (v, x) — Sz, v — fRax),
deq004
it follows from Theorem &3%.3 that Ry (L*(F;m)) is dense in .Z with respect

to the norm &. Therefore & (u,,v) — & (u,v) for any v € . and & (u,, —
u, Uy, — u) < 28 (u,u) — 281 (uy, u) — 0. The proof of (e) is similar. O

Exercise 3.1 Assume that u,,u € %, u, — u with respect to &-norm
and ¢ is a real function such that ¢(0) = 0, |¢(t) — ¢(s)| < |t — s| for any
t,s € R. Prove that ¢(uy,), ¢(u) € .7 and ¢(u,) — ¢(u) weakly with respect

to &-norm. If; in addition, ¢(u) = u, then the convergence is in norm.
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Abounded linear operator S on L?(E;m) is called Markovian if 0 <
Su < 1 a.e. whenever u € L?(E;m), 0 < v < 1 a.e. This implies S is
positive, i.e., Su > 0 a.e. for u > 0 a.e. The semigroup (F;) is Markovian
if P, is Markovian for every ¢t > 0 and the resolvent (R,) is Markovian if
aR, is Markovian for every o > 0. It is evident that the semigroup (F;) is

Markovian if and only if its resolvent (R,) is Markovian.

Theorem 3.4.3 & is Markovian if and only if its resolvent (R,) is Marko-

vian.

Proof. Let’s prove necessity first. Fix a > 0 and u € L?(E;m) such that
0 <u <1 a.e. Define a quadratic form ¥ on .% by

Y(v) = E(v,v) + alv —u/a,v —u/a), veF. (3.12)
Since &, (Ryu,v) = (u,v),
Y(v) = Y(Rau) + Eu(Rou — v, Ryu — v). (3.13)
Then R,u is the unique element in .% minimizing 1. Let
1 1
w=—-(0VaR,u)AN1=(0V Ryu) A —.

« (07

Then w is a normal contraction of R,u and it follows that w € % and
E(w,w) < &(Ryu, Ryu). On the other hand, since 0 < u < 1 a.e., we have

lw —u/al < |Rsu—u/al and easily
lw —u/alp < [Row—u/fal L.

Combining these, we have ¥(w) < ¥(R,u). By the uniqueness, w = R,u or
0V aR,u N1 = aR,u, which implies 0 < aR,u < 1 a.e. This proves that
(Re) is Markovian.
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The sufficiency is more difficult. The proof below is cited from [?]. As-
sume that (R, ) is Markovian. For any u € .%, let v is a normal contraction
of u. We need to show that v € .# and &(v,v) < &(u,u). Indeed, by the

approximating form, it suffices to prove that for any 5 > 0,

(0,0~ BRsv) < {(u,u — BRsu), (3.14)

Since the simple functions are dense in L?(FE;m) we may assume that

n
u= E aila,,
i=1

with {4;} disjoint and m(4;) < oco. Since v is a normal contraction, v is

constant on every A;, i.e., there exist {b;} such that v = Y7 b;14, and

104301

(}263. 4} 1S equivalent to
D bibi(la, = BRsla, 1a,) < Y aiay(la, — BRsla,, La,). (3.15)
.3

2%
Using identity zy = 1((z + y)? — 22 — ¢?) for real z,y € R, we get
> bibj(1a, — BRsla,, 1a,)

i?j

= bibj(la, 1a)) = > bibi(BRela,, 1a;,1a,)
0

i)j

1
_ Z b1 BRs1,1a) + 5 > (b = b;)*(BRsla,, 14,).

.3

The normal contraction property implies that
1b;| <lail, |b;i —b;] <la; —ayl, i,j=1,--- ,n.

:0430-2
Then (}263. [0) follows immediately from the Markovian property: SRzl <1
and BRﬁlAi > 0. O
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In particular, u™ A 1 is a normal contraction of u and is called a unit
contraction. The first half in the proof of Theorem B.4.3 proves that if every
unit contraction operates on &, then (aR,) is Markovian and hence every

normal contraction operates on &.

3.5 Capacity

In this section when we talk about an equality or inequality concerning func-
tions in L?(E;m) without referring to any measure we mans m-almost ev-
erywhere.

For an open subset A of F, if £y ={u € .F :u>1on A} is non-empty,
we say A has finite capacity and define the capacity of A as

C(A) = inf{&(u,u) : u € ZL4}. (3.16)

Since % is a closed convex subset in a Hilber space (%, &), there exists a
unique element in %4, denoted by e4 and called the equilibrium potential of
A, such that C(A) = & (ea,ea). Since ef A1 € £, is a normal contraction
of eq, &1 (e AN1,eff A1) < & (ea,ea) and hence e} A 1 = ey by uniqueness.
It follows that 0 < ey <1l andey =1 on A.

Lemma 3.5.1 ey = 1 on A and for any u € .# withu > 0on A, & (u,ey) >

0. Actually e, is the unique element in £, satisfying the property above.
Proof. For such u, Au+ ey € £, for any A > 0. Then

Ei(ea,en) < E(Au+eq, A\u+ey)
= N& (u,u) + 20 (u,e4) + & (ea, ea)

and it follows that & (u,eq) > 0. Conversely if v € £, satisfies v =1 on A
and & (v,u) > 0 for each u € F with u > 0 on A, then for any w € Zy,
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w—wv >0on A, and hence
E(w,w) = (w—v+v,w—v+v) > E(v,0)

namely v minimizes &} in £, and it implies that v = ey4. O

It is seen from this lemma that & (u,es) =0if u =0 on A or & (u,es) =
C(A) if u=1on A.
Lemma 3.5.2 Assume that A, B are open and A C B. Then C(A) < C(B)
and ey < eg.

Proof. The first claim is obvious. For the second claim, it suffices to prove
that (eg —eq)™ + e4 = eg. Denote the left side by u. Then u € %5, and,
using Markovian property and Lemma 3.5.1, we have

E(u,u) = & ((ep —ea)™, (ep —ea)™) +281(ea, (ep —ea)™) + Ei(ea, ea)
< &i(ep —ea,ep —eq) + E1(ea,ea)

= &1(ep,ep) — 281(ep — ea,ea) = i(ep, ep).
It implies that u = ep. O

Proposition 3.5.3 The capacity of open sets has the following properties
which make it a Choquet capacity on E.

(1) For open A C B, C(A) < C(B);

(2) For open A,, T A, C(A,) T C(A);

(3) For open A, B, C(AUB) + C(AN B) < C(A) + C(B).

Proof. (1) has been shown. (2) It suffices to show that lim, &i(ea,,e4,) >
C(A), where the sequence on the left is increasing. Since &i(ea,,ea,) <
&1(ea,eq), by Banach-alaoglu Theorem, there exists a subsequence of ez,

say itself, such that its Cesaro mean % > k—1 €4, converges to some u € .Z in
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&1-norm and also almost surely. Due to the fact that e, is increasing, u > 1

on A and hence

e

k=1
1 n
< lim =
<tim =3 feal,
k=1

= hnl ” eAn ||éal7
n

leal, < lul, =1im

&1

where |ul, = /& (u,u), the &-norm on 7.
(3) We prove

ea+ep—eaun —eanp > 0 (3.17)

1:0503-2
on AU B. Indeed, since eg > esnp by Lemma )3.5.2 and e4 = equp on A,

e:0503-1 e:0503-1
(}3. 7) 1s true on A. Similarly (&3 [7) 1S true on B.

1:0503-1
Now by Lemma %.5. , &1(ea + e —eaun — eans,eaup) > 0 and the
, 1:0503-1
conclusion follows from the remark below Lemma %.5. [ O

Now for any subset A C E, define the capacity of A by
C(A) =inf{C(B): B open and A C B}. (3.18)

When A is open, this definition is consistent with that above. Clearly a set
A is capacity zero if and only if there exist open subsets B, | such that
AcC (), B, and C(B,) | 0.

Theorem 3.5.4 The capacity on all subsets defined above satisfies (1)-(3)

:0504-1
in Proposition E§.5.3.

Proof. (1) is obvious. (2) Let A, 1 A. It suffices to show that lim, C(4,) >
C(A). Take open B, such that B, D A, and C(B,) — C(4,) < £/2". Set
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G, = By U---UB,. We may verify by induction that
C(Gn) = C(Ay) <) /2" <.
k=1
Since |JG,, D A,

lim C(A,) + ¢ > lim C(G) = cJGn) = C(A).

By the arbitrariness of €, we have the conclusion. The proof of (3) is easy

and left as an exercise. O

Exercise 3.2 If B is Borel subset of E and C(B) = 0, then m(B) = 0.

3.6 Regularity and quasi-continuous version

Definition 3.6.1 A function u on E is called quasi-continuous if for any
e > 0, there exists a closed set F' such that C(F°) < ¢ and u is continuous
on F. A sequence {F),} of closed sets increasing to E is called a nest on E

if C(E\ F,,) | 0. A nest {F,} is m-regular if supp(1p, - m) = F,, for each n.

Clearly u is quasi-continuous if and only if there exists a nest {F},} such
that u is continuous on each F,,. We now assume that the Dirichlet form
(&, F) on L*(E;m) is regular in the sense of Fukushima, i.e., E is locally
compact with countable base, Cs,N.Z is dense both in C,, under the uniform

norm and in .% under &;-norm.
Exercise 3.3 If (&,.%) is regular, then m must be a Radon measure.
Proof. Let K be a compact subset of E. Take a relatively compact open

set G O K. There exists a continuous function v > 0 such that v = 1

on K and u = 0 on G°. Then u € C,(E) and by regularity there exists
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v € Coo N F, such that Ju—v| < i. It is clear that v > 1 on K. Using

Markovian property of &, vt A1 € % and it is no less than % on K also.

Hence co > (v A Lot A1) > Im(K), ie., m(K) < oo. O

Exercise 3.4 For a given nest {F,} on E, let F! = supp(lg, - m). Then

{F!} is an m-regular nest.

Exercise 3.5 If u is quasi-continuous, then u > 0 a.e. implies that u > 0

except on a capacity zero set.

Lemma 3.6.2 For u € C,, N.% and A\ > 0,
1
C({lul = A}) < 1561 (u,w). (3.19)
:0504-1
Proof. Since A™'u > 1 on {|u|] > A} which is open, (E. [9) 1s immediate. [

Theorem 3.6.3 If (&,.%) is a regular Dirichlet form on L?(E;m), then each

element u € .% has a quasi-continuous version.

Proof. Take u, € C(E) N F such that |u — u,|, — 0. Then there exists

a subsequence of {u,}, say itself, such that

ftnss — talg, < 5

1:capine
By Lemma &3.6.%,

1 nt
C <{|Un+1 —Un| > ﬁ}) < 2%

Then by the countable subadditivity, we have

C (U{|Un+1 — Up| > n_2}> < Z;Tn

n>k n>k

Set

F = (U{|un+1—un| zn”}) = lss = <n°?)

n>k n>k



CHAPTER 3. DIRICHLET FORMS 75

for kK > 1. Then limy, C(F¥) = 0 and |ty 1(2) — un(x)| < n~2 holds for all
x € F, and n > k. Hence u,, converges to some function v uniformly on F'.
It follows that u, — v pointwisely on (J, F,,. On the other hands, u, — u
a.e. m on E. This means u = v a.e. m on |J,, F,,. However the complement
of |,, F» has capacity zero and hence has measure zero. It implies that u = v

a.e. on E and v is clearly quasi-continuous. O]
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Symmetric Markov processes

4.1 Symmetric Borel right processes

Let X be a Borel right process on E with transition semigroup (F;).

Definition 4.1.1 Let m be a o-finite measure on (E,&). The process X
is called symmetric with respect to m if for any non-negative measurable

functions f, g and t > 0,

/ 9(2)Pof (2)m(de) = / f(2) Pog(x)m(dz).

If we write the inner product of f,g € L*(E;m) as (f, g), this means

(Pif9) = (f, Big).

It follows that m € Exc.

Lemma 4.1.2 If £ € Exc and p > 1, then (P;) may be extended to a

contraction semigroup on LP(E;¢).

Proof. For f,q € & with f = g Eac., since €|P.f — Pg| < €RIf — g| <
E|lf —g| =0, Pf = P, (-a.e. Hence for any f € LP(E;E) with p > 1, P f

76
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does not depend on any particular version of f. By Holder’s inequality

|Pif ()] =

/EPt(flf,dy)f(y)‘
< [ reaniol < ([ paalsor) v

Hence we have

PS5 = [ IPs@lean) < [ PO = ePar) <1
E B
i.e., (P,) is also a contraction semigroup on LP(F;¢). O

Theorem 4.1.3 (P,) is a strongly continuous contraction semigroup on

L*(E;m).
Proof. Take av > 0 and set
D={U%: feb&NLYE;m)} C L*(E;m).

Then D is dense in L?(m). Indeed, it suffices to show that if g € L?(E;m)
and (g, U*f) =0 for all f € b& N LY(E;m), then g = 0 a.e. By the resolvent
equation, it follows that (g, U?f) = 0 for all 3 > 0. Choose h = U'k where
k € b& N L'(E;m) and strictly positive. Then for any bounded f € C(E),
t — f(Xy)h(X,) is right continuous and hence SUP*(fh) — fh a.e. as
8 — oo. However (g, BUP*(fh)) = 0. Since h is 1-excessive,

Blg - UT(fR)] < BlglUT fh] < 1 flLolglBU R < [ flolglh-
It follows from the dominated convergence theorem that
(9 fonm = 9, 1) = Jim (g, SUPT(f1)) = 0.

Since h - m is a finite measure, C'(E) is dense in L?(FE;h-m) and then g = 0

a.e. M.
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We now prove the strong continuity. Fix o > 0.Let u = U*f € D. Then
t
u(z) = / e” P, f(x)ds + e " Pou(x)
0
and, as t J 0,

|Pu—ul,. < He‘o‘tPtu — uHL2
< (@ =) ul 2 + t1f] 2 = 0.
For any u € L*(E;m), take u,, € D such that u, — u in L?. Then
P~ s < Pt — Prtal o+ 1Prtn s + il

< 2un = uf 2 + | Prun — tn] 2

It follows that (P;) is strongly continuous. O

Let (L, D(L)) be the infinitesimal generator of strongly continuous con-
deq004
traction semigroup (P;) on L?*(E;m). By Theorem 3 , the bilinear form
(&,.7) defined by

&(f,9) = (V-Lf,V—Lg), F = D(V-L), (4.1)

is a symmetric form on L?(E;m) and it may be represented by its approxi-

mating form

£(J,9) =lim 5(f = Pf.g),

1 (4.2)
F = {f € L*(E;m) :sgp;(f—PJ,f} < oo}

Recall that we usually write

0(f.9) = U = Pif.g), 6V(f.0) = B(F — BU°F.g).
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Theorem 4.1.4 (&,.%) is a Dirichlet form on L?(E;m).

t:0430-5
Proof. Though this theorem is actually a consequence of Theorem }3.4.3, we
would like to give a direct proof here. It suffices to prove that (&, %) is

Markovian. By symmetry, m(dz)P;(x, dy) is symmetric and then for f € &%,

EN( <f f—Pf)

) =
/f — (Pf) () m(da)

:Z/Ef(x)( /f Pta:dy)m(dx)
— 1 [t ([ i) - u(y»mx,dy)) m(an) + 5 [ £20- Ryan

=1 [ 5@ U@~ ) P dmian + 1 [ 0= pa)
5 | U@ = 1) Py + 5 [ 0= R)

If g is a normal contraction of f, it is then obvious that

ED(g,9) < ED(L, f)

and hence f € .% implies that g € . and &(g,9) < &(f, f)- O

4.2 Irreducibility and uniqueness of symmetriz-
ing measure

When the process X is symmetric with respect to m, m is called a sym-
metrizing measure of X. The existence and uniqueness of symmetrizing
measures of X are always interesting to explore. In this section we shall intro-

duce the notion of fine irreducibility and prove that it implies the uniqueness.
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The process X is called finely irreducible if P*(Tp < oo) > 0 for any x € F
and a non-empty finely open subset D, where T is the hitting time of D.
Intuitively the fine irreducibility means that any point can reach any non-
empty finely open set, while the usual irreducibility means that any point can
reach any non-empty open set. Certainly the fine irreducibility is stronger
than the usual irreducibility. Since the fine irreducibility is hard to be char-
acterized, we shall give a few equivalent statements which may be useful in

some circumstances.

Lemma 4.2.1 The following statements are equivalent.
(1) X is finely irreducible.
(2) U*1p is positive everywhere on E for any non-empty finely open set D.
(3) U*14 is either identically zero or positive everywhere on E for any Borel
set A or, in other words, {U%(z, ) : x € E} are all mutually absolutely
continuous.

(4) All non-trivial excessive measures are mutually absolutely continuous.

Proof. The equivalence of (1) and (2) is easy. We shall prove that they are
equivalent to (3). We may assume o = 0. Suppose (1) is true. If U1, is not
identically zero, then there exists 0 > 0 such that D := {Ul4 > d} is non-
empty. Since Uly, is excessive and thus finely continuous, D is finely open

1:0430-2
and the fine closure of D is contained in {U14 > 60}. Then by Lemma T.377,
UlA(x) > PDUlA(I> =FE* (UlA(XTD>) > (SPx(TD < OO) > 0.

Conversely suppose (3) is true. Then for any finely open set D, by the right
continuity of X, Ulp(z) > 0 for any x € D. Therefore Ulp is positive
everywhere on FE.

Let £ be an excessive measure. Since afU® < &, £(A) = 0 implies that
¢U*(A) = 0. However ¢ is non-trivial. Thus it follows from (3) that U*14 =
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0, i.e., A is potential zero. Conversely if A is potential zero, then {(A) = 0
for any excessive measure £. Therefore (3) implies (4).
Assume (4) holds. Since U(z, -) is excessive for all  and hence they are

equivalent. This implies (3). O

Theorem 4.2.2 Assume that X is finely irreducible. Then the symmetriz-
ing measure of X is unique up to a constant. More precisely if both p and
v are non-trivial symmetrizing measures of X, then v = cu with a positive

constant c.

Proof. First of all there exists a measurable set H such that both u(H) and
v(H) are positive and finite, because u and v are equivalent by Lemma Efé).él@_-l
This is actually true when both measures are o-finite and one is absolutely
continuous with respect to another. Indeed, assume that v < p. Since
v is non-trivial and o-finite, we may find a measurable set B such that
0 < v(B) < oco. Then p(B) > 0. Since p is o-finite, there exist A, 1 E such
that 0 < p(A,) < oco. Then v(A,NB) T v(B) and p(A, N B) T u(B). Hence
there exists some n such that v(A,,NB) > 0. Take H = A,,N B, which makes
both u(H) and v(H) positive and finite.

Set ¢ = v(H)/pu(H). We may assume that ¢ = 1 without loss of generality.
Let m = p+ v. Then there is f1, fo > 0such p= f;-m and v = fy - m. Let
A={fi> fo}, B={fi=fo} and C = {f1 < fo}.

We shall show that v = u. Otherwise u(A) > 0 or v(C) > 0. We
assume that p(A) > 0 without loss of generality. Since p is o-finite, there is
A, € B(F) such that A, C A, u(A,) < oo and A, T A. Let D = BUC.

For any integer n and a > 0,

(U4, 1p)y < (U4, 1p), = (U%1p,14,), < (U%1p,14,),



CHAPTER 4. SYMMETRIC MARKOV PROCESSES 82

Since (UalAn, 1D),u = (Ualp, 1An)u7 it follows that (Ualp, 1An)V = (UalD, 1An)u‘

Thus we have

f
fi

> 0 on A, let n go to infinity and by the monotone convergence

(U*1p,(1 —=)1a,) = (U%lp,14,), — (U%1lp, 14,), = 0.

f2
f1

theorem we get that (U*1p,14), = 0. The fine irreducibility of X implies

Since 1 —

that U%1p = 0 identically or D is of potential zero. Therefore

Consequently,

0= uH) ~ () = [ (=i

which leads to that u(H N A) = 0 and also u(H) = 0. The contradiction
implies that v = pu. [l

The following example shows that the usual irreducibility is not enough
to guarantee the uniqueness of symmetrizing measure, while the fine irre-

ducibility might be too strong.

Example 4.2.3 Let
1
J = 1(51 + 5—1 + 5\/5 + 5_\@)

defined on R and 7 = {m };~¢ the corresponding convolution semigroup; i.e.,

7 (z) = e @) with
() = /(1 —coszy)J(dy) = %(1 —cosx) + %(1 — cosV/2z).

Let X be the corresponding Lévy process. Then X is symmetric with respect
to the Lebesgue measure. Let N = {n +m+v/2 : n,m are integers} and

p=> ey 0z Then puis o-finite and also a symmetrizing measure. It is easy
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to see that any point z can reach any point in £+ /N and can not reach outside
of x + N. Since xz + N is dense in R, any point can reach any non-empty
open set, namely X is irreducible. However any compound Poisson process
will stay at the starting point for a positive period of time, i.e., any singleton
is finely open. Hence X is not finely irreducible.

Another interesting example is also a compound Poisson process X, where
the Lévy measure J is a probability measure on R with a continuous even
density. In this case, we can show that X has a unique symmetrizing measure,
the Lebesgue measure, but X is still irreducible, while not finely irreducible.

Actually any single point can not reach any other point.

It is known that the fine topology is determined by the process and hard
to identify usually. Hence it is hard to verify sometimes the fine irreducibility

defined in the theorem.

Definition 4.2.4 We say X is LSC or strong Feller, if U%1p is lower-

semi-continuous or continuous, respectively, for any Borel subset B of E.

Lemma 4.2.5 If X is LSC or strong Feller, the fine irreducibility is equiva-

lent to the usual one.

Proof. 1t suffices to prove that P*(Tp < oo) > 0 for any # € E and non-

empty open subset D C E. In fact, take A € B(E) with U*14 # 0 identi-

cally. There is b > 0 such that G = {U%14 > b} # () and is open due to the
' 1:0430-2

property LSC. Again by Lemma [[.3.7, for any x € F,

UlA([E) > PgUlA(l’) = P* (UlA(XTG),TG < OO) .

— t:100428-3
But X7, € G on {Tg < oo} by Theorem I.3.5 and then X7, > b on {1 <
oo}. Hence by the irreducibility, we have

UlA(l’) > bP* (TG < OO) > 0.



CHAPTER 4. SYMMETRIC MARKOV PROCESSES 84
[l

Question If X is a Lévy process, what conditions imposed on its Lévy

exponent guarantee that X is irreducible or finely irreducible?

4.3 Restriction



