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Introduction

I have planned for years and am now trying hard to write a book on theory of

Markov processes and symmetric Markov processes so that graduate students

in this field can move to the frontier quickly. In my impression, Markov

processes are very intuitive to understand and manipulate. However to make

the theory rigorously, one needs to read a lot of materials and check numerous

measurability details it involved. This is a kind of dirty work a fresh graduate

student hates to do, but has to do. My purpose is to help young researchers

who are interested in this field to reduce the fear when they face it.

This book roughly covers materials of general theory of Markov processes,

probabilistic potential theory, Dirichlet forms and symmetric Markov pro-

cesses. I dare not say that all results are stated and proven rigorously, but

I could say main ideas are included. For completeness and rigorousness, the

readers may need to consult other books. The classic reference books are

listed as follows.

1. Dynkin, Markov processes, Moscow, 1963; English translation, Springer,

Berlin, 1965

2. Kellogg, Foundations of potential theory, Springer, 1967

3. Meyer, Processus de Markov, Lecture Notes in Math 26, Springer, 1967
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4. Blumenthal, Getoor, Markov processes and potential theory, Academic

Press, 1968

5. Getoor, Markov processes: ray processes and right processes, Lecture

Notes in Math 440, Springer, 1975

6. Berg & Forst, Potential theory on locally compact abelian group, Springer,

1975

7. Port and Stone, Brownian motion and classical potential theory, Aca-

demic Press, 1978

8. Fukushima, Dirichlet forms and Markov processes, Kodansha and North-

Holland, 1980

9. Chung, From Markov processes to Brownian motion, Springer, 1982

10. Doob, Classical potential theory and its probabilistic counterpart, Springer,

1983

11. Bliedtner & Hansen, Potential Theory, Springer, 1986

12. Sharpe, General theory of Markov processes, Academic Press, 1988

13. Getoor, Excessive measures, Birkhauser, 1990

14. Dellacherie, Meyer, Probabilites et Potentiels, Hermann, 1978-1992

15. Ma, Röckner, Introduction to the theory of Dirichlet forms, Springer, 1992

16. Fukushima, Oshima, Takeda, Dirichlet forms and symmetric Markov pro-

cesses, de Gruyter, 1995
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We shall state some fundamental results in general theory of stochastic

processes mainly developed by Strasburg school of probability. Let (Ω,F ,P)

be a complete probability space. A family of σ-algebra (Ft) = {Ft : t ≥ 0}
is called a filtration if for any 0 ≤ s < t, Fs ⊂ Ft ⊂ F . We say a filtration

(Ft) satisfies the usual condition if each Ft contains all null sets in F and

it is right continuous, namely, for each t ≥ 0,

Ft = Ft+ =
∩
s>t

Fs. (0.1)

Let (Ft) be a filtration and X = (Xt : t ≥ 0) a real-valued stochastic

process. X is (Ft)-adapted (or adapted, if no confusion will be caused) if

for each t ≥ 0, Xt is Ft-measurable. Moreover X is (Ft)-progressively

measurable if for each t ≥ 0, the map (s, ω) 7→ Xs(ω) is measurable as a

map from ([0, t]×Ω,B[0, t]×Ft) to (R,B(R)), where B[0, t] and B(R) are

Borel σ-algebra on [0, t] and R, respectively. If no confusion is caused, (Ft)

in the front may be omitted. A subset A ⊂ R×Ω is progressively measurable

if so is the process (t, ω) 7→ 1A(t, ω). A process is called right continuous or

continuous or left continuous if almost all sample path has such regularity.

Theorem 0.0.1 A right continuous and adapted process is progressively

measurable.

The least σ-algebra on R×Ω such that all adapted right continuous real

processes are measurable is denoted by O, an optional σ-field. A process

which is O-measurable is called optional. Then the theorem above implies

that an optional process is progressively measurable. A map τ : Ω 7→ [0,∞]

is called an (Ft)-stopping time if for each t ≥ 0, {τ ≤ t} ∈ Ft. For a

stochastic process X and a subset A ⊂ R, define the hitting time of A as

TA = inf{t > 0 : Xt ∈ A}. (0.2)
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Theorem 0.0.2 If the filtration (Ft) satisfies the usual condition and X is

progressively measurable, then for any Borel subset A ⊂ R, TA is a stopping

time.

The following theorem is called the section theorem, which is fundamen-

tal.

t:section Theorem 0.0.3 Let X be a bounded progressively measurable process. If

for any bounded decreasing sequence of stopping times {Tn},

lim
n

E[XTn ] = E[Xlimn Tn ], (0.3)

then X is right continuous.



Chapter 1

Right Markov processes

1.1 Right continuous Markov processes

In this section we shall first introduce the notion of right processes, which,

essentially due to P.A. Meyer, makes classical potential theory operate almost

naturally on it. Though, more or less, right processes are right continuous

Markov processes with strong Markov property, it is a difficult task to give

the definition clearly and concisely. Let (E,E ) be a topological space with its

Borel σ-algebra. For any probability measure µ on E, E µ is the completion

of E under µ and set

E ∗ =
∩
µ

E µ (1.1)

where µ runs over all probability measures on E. A set in E ∗ is called a uni-

versally measurable subset of E. Any probability measure on (E,E ) may be

uniquely extended on E ∗. The requirement for topology on E may vary, but

in most cases, Radon space or Lusin space, which is a universally measurable

subset or Borel subset of a compact metric space, respectively. One reason

5
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why we need to start from seemly so general topology is that in this way the

class of right processes keeps stable under usual transformation in Markov

processes such as killing transform, time change and drift transform.

Definition 1.1.1 Let E be a Radon space. A family of kernels (Pt)t≥0 on

(E,E ∗) is called a transition semigroup if PtPs = Pt+s for any t, s ≥ 0 and

Pt(x,E) ≤ 1 for any t ≥ 0 and x ∈ E. In addition, if Pt(x,E) = 1 for any

t ≥ 0 and x ∈ E, it is called a transition probability semigroup. A transition

semigroup (Pt) is called a Borel semigroup if E is Lusin space and each Pt is a

kernel on (E,E ), or maps a Borel measurable function to a Borel measurable

function.

It is known that by joining a point ∆, called a cemetery point, to E, (Pt)

may be extended into a transition probability semigroup on E∆.

Definition 1.1.2 Let (E,E ∗) be a Radon space and its universal Borel sun-

sets. A group of notations

X = (Ω,G ,Gt, Xt, θt,P
x)

is called a right continuous Markov process on state space E or say X

satisfies (HD1) if the following conditions are satisfied.

(1) (Ω,G ,Gt) is a filtered measurable space and (Xt) is an E∆-valued pro-

cess E ∗
∆-adapted to (Gt), more precisely for any t ≥ 0, Xt is a mea-

surable mapping from (Ω,Gt) to (E∆,E ∗
∆). For every x ∈ E∆, P

x is a

probability measure on (Ω,G )

(2) (θt)t≥0 is a family of shift operators for X, i.e., θt : Ω → Ω and, identi-

cally for any t, s ≥ 0,

θt◦θs = θt+s and Xt◦θs = Xt+s.
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(3) (normality) For x ∈ E,

Px(X0 = x) = 1.

Moreover x 7→ Px(H) is universally measurable for any H ∈ G .

(4) (Markov property) For every t, s ≥ 0, f ∈ bE ∗ and x ∈ E, it holds

Px-a.s.

Px(f(Xt+s)|Gs) = Ptf(Xs). (1.2)

(5) (regularity) t 7→ Xt is a right continuous process on E∆ = E ∪ {∆}
almost surely.

(6) (life time) Define ζ(ω) := inf{t : Xt = ∆}. Then Xt(ω) ∈ E for

t < ζ(ω), and Xt(ω) = ∆ for all t ≥ ζ(ω). Hence ζ is called the lifetime

of X.

A transition semigroup (Pt) satisfies (HD1) if it has a realization satisfying

(HD1). The word for almost all means “for any x ∈ E and Px-almost all”,

i.e., a measurable subset Ω0 of Ω such that Px(Ω0) = 1 for all x ∈ E. Notice

that the measurability in (3) is not so much restricted since it holds at least

for σ-algebra generated by (Xt) itself. Let (F 0∗
t ) (resp., (F 0

t )) be the natural

filtration of (Xt) generated by E ∗ (resp., E ), precisely,

F 0∗
t = σ

(∪
s≤t

X−1
s (E ∗)

)
, F 0

t = σ

(∪
s≤t

X−1
s (E )

)
. (1.3)

Clearly for any t ≥ 0, F 0∗
t ⊂ Gt and F 0∗

∞ ⊂ G . By monotone class theorem,

x 7→ Px(H) is E ∗-measurable for any H ∈ F 0∗
∞ . Furthermore if (Pt) is Borel

semigroup, x 7→ Px(H) is E -measurable for any H ∈ F 0
∞.
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Fix now such a process X on E. For any probability measure µ on (E,E ),

define

Pµ(H) =

∫
E

Px(H)µ(dx), H ∈ G . (1.4)

Denote by G µ the completion of G with respect to Pµ and G µ
t the σ-field

generated by Gt and all Pµ-null sets in G µ. We usually say that G µ
t is the

augmentation of Gt in (Ω,G ,Pµ).

Exercise 1.1 Prove that the completion of F 0
∞ with respect to Pµ is equal

to the completion of F 0∗
∞ with respect to Pµ. The same conclusion holds for

the augmentation of (F 0
t ) and (F 0∗

t ) in (Ω,F ,Pµ).

Set

G̃ =
∩
µ

G µ, G̃t =
∩
µ

G µ
t , (1.5)

where µ runs over all probability measures on (E,E ). The filtration (G̃t)

is called the augmentation of (Gt). It is not hard to see that the process

has Markov property with respect to (G̃t) and actually for any probability

measure µ on E, it holds Pµ-a.s. for t, s ≥ 0, f ∈ bE ∗

Pµ(f(Xt+s)|G µ
s ) = Ptf(Xs). (1.6)

The procedure to get (G̃ µ
t ) and (G̃t) is called augmentation of the filtra-

tion of X with respect to the laws (Px). This is a ‘dirty’ work which has to

be done for a Markov process. Therefore we may assume from the beginning

that G and (Gt) are augmented. The augmentation of the natural filtration

(F 0
t ) is denoted by (Ft), which is also the augmentation of (F 0∗

t ). After the

augmentation, we have to check that we still have the necessary measurabil-

ity such as
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(1) For B ∈ G , x 7→ Px(B) is universally measurable;

(2) Xt is measurable from (Ω,Gt) to (E,E ∗);

(3) θt is measurable on (Ω,G ).

The good news about augmentation which we shall prove later is that

(Gt) will satisfy the usual condition when a slight more condition is imposed,

and then the hitting time of any optional set is then a stopping time.

For α > 0, a [0,∞]-valued measurable function f on (E,E ∗) is α-supermidian

if e−αtPtf ≤ f for each t > 0 and α-excessive if, in addition, e−αtPtf ↑ f as

t ↓ 0. Let Sα be the set of all α-excessive functions.

Definition 1.1.3 Let E be a Radon space and (Pt) a transition semigroup

on E. Assume that the collection

X = (Ω,G ,Gt, Xt, θt,P
x)

is a right continuous Markov process on E with (Pt) as its semigroup. Then

X is said to be a right process provided X satisfies (HD2), namely for

any α-excessive function f , t 7→ f(Xt) is right continuous almost surely.

Moreover if E is Lusin space and (Pt) is a Borel semigroup, then X is called

a Borel right process.

The first important property of right processes is strong Markov property.

We now give two fundamental theorems for right processes. Note that we

may always assume that Ω is the canonical space, i.e., the space of right

continuous maps from [0,∞) to E. To state strong Markovian property, we

assume that readers are familiar with the theory related to stopping times.

We shall now introduce the notion of potential which plays an essential

role in general theory of Markov processes. To define α-potentials, some mea-

surability needs to be clarified in advance. For a bounded continuous function

f on E, t 7→ f(Xt) is right continuous and hence (t, x) 7→ Ex[f(Xt)] = Ptf(x)
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jointly measurable on (R+ × E,B(R+) × E ∗). It is also true for bounded

Borel measurable f by monotone class theorem. The following exercise makes

it possible to define resolvent of (Pt) and use Fubini theorem.

Exercise 1.2 For f ∈ bE ∗, (t, x) 7→ Ex[f(Xt)] is measurable for the com-

pletion of (B(R+) × E ∗) with respect to the product measure of any finite

measure on R+ and a finite measure on E ∗.

For α > 0 and f ∈ bE ∗, define the resolvent or α-potential of f

Uαf(x) =

∫ ∞

0

e−αtPtf(x)dt (1.7)

= Ex

∫ ∞

0

e−αtf(Xt)dt. (1.8)

Then we have the well-known resolvent equation

Uα = Uγ + (γ − α)UαUγ (1.9)

for α, γ > 0.

t:100425-1 Theorem 1.1.4 Let X be a right process on E with transition semigroup

(Pt). Then

(1) X has strong Markov property with respect to (F 0
t+), i.e., for any

(F 0
t+)-stopping time σ, f ∈ bE ∗, t > 0 and x ∈ E,

Ex[f(Xt+σ)1{σ<∞}|F 0
σ+] = 1{σ<∞}E

Xσ [f(Xt)], (1.10)

Px-a.s.;

(2) for any probability µ on E, (F µ
t ) is right continuous, and then (Ft) is

right continuous.
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Proof. (1) Let f be a uniformly continuous bounded function on E. Assume

that σ <∞. Set

σn =
∑
k≥1

k

2n
1{(k−1)2−n≤σ<k2−n}

Then σn ↓ σ and σn is (F 0
t )-stopping time. By the right continuity and

simple Markov property of X, we have for any probability µ on E,

Eµ

∫ ∞

0

e−αtf(Xt+σ)dt = lim
n

Eµ

∫ ∞

0

e−αtf(Xt+σn)dt

= lim
n

∑
k

Eµ

(∫ ∞

0

e−αtf(Xt+ k
2n
)dt; σn =

k

2n

)
= lim

n

∑
k

Eµ

(
EX( k

2n
)

∫ ∞

0

e−αtf(Xt)dt; σn =
k

2n

)
= lim

n
EµUαf(Xσn) = EµUαf(Xσ)

=

∫ ∞

0

e−αtEµEX(σ)f(Xt)dt.

This means that t 7→ Eµf(Xt+σ) and t 7→ Eµ[EX(σ)f(Xt)] have the same

Laplace transform and it implies they are identical because they are both

right continuous. Hence

Eµf(Xt+σ) = Eµ[EX(σ)f(Xt)]

from which, the strong Markov property with respect to (F 0
t+) follows.

(2) Obviously (1) implies that X has simple Markov property with re-

spect to (F 0
t+), i.e., for any bounded random variable Y on (Ω,F 0

∞) and a

probability µ on E, it holds Pµ-a.s.

Eµ(Y ◦θt|F 0
t+) = EXt(Y ) = Eµ(Y ◦θt|F 0

t ). (1.11)

It is easy to verify that when Y = f1(X1) · · · fn(Xtn),

Eµ(Y |F 0
t+) = Eµ(Y |F 0

t ),



CHAPTER 1. RIGHT MARKOV PROCESSES 12

and actually it holds for any Y ∈ bF 0
∞ by monotone class theorem. Then for

A ∈ F 0
t+, we have Pµ-a.s. 1A = Eµ(1A|F 0

t ), and hence A ∈ F µ
t . It implies

that

F 0
t+ ⊂ F µ

t .

The conclusion follows from an assertion that the σ-field generated by F 0
t+

and Pµ-null sets equals F µ
t+, which is left to the readers as an exercise.

By (2) in Theorem
t:100425-1
1.1.4, we may always assume without loss of generality

that the filtration (Gt) satisfies usual condition, i.e., it contains all null sets

and right continuous. By augmentation, the strong Markov property may be

stated as follows. For any probability µ and a non-negative function f ∈ E ∗,

if σ is an (F µ
t )-stopping time, then

Eµ(f(Xt+σ)1{σ<∞}|F µ
t ) = Ptf(Xσ)1{T<∞}. (1.12)

Exercise 1.3 Prove that

Eµ

∫ ∞

T

e−αtf(Xt)dt = Eµ
(
e−αTUαf(XT )

)
. (1.13)

The following lemma lists some properties of excessive functions and is

easy to verify. For α ≥ 0, a non-negative measurable function f on E, which

may take infinity, is called α-excessive, write f ∈ Sα, if (1) e−αtPtf ≤ f for

each t > 0; (2) e−αtPtf converges to f as t ↓ 0. When α = 0, we simply say

f is excessive and f ∈ S.

l:100428-1 Lemma 1.1.5 (1) Sα is a cone.

(2) Sα is stable under increasing limit.

(3) If α > β ≥ 0, Sα ⊃ Sβ and Sβ =
∩

r>β S
r.

(4) If f, g ∈ Sα, f ∧ g ∈ Sα.

(5) If f is α-super-median and µ is a probability measure on E satisfying
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µ(f) < ∞, then the process (e−αtf(Xt)) is a super-martingale with respect

to Pµ.

Actually the proof of (4) needs to use (HD2) on the process.

l:100428-2 Lemma 1.1.6 (1) For α ≥ 0 and E ∗-measurable f ≥ 0, Uαf ∈ Sα.

(2) For α ≥ 0, f ∈ Sα if and only if βUα+βf ↑ f as β ↑ +∞.

(3) For α > 0 and f ∈ Sα, there exist gn ∈ bE ∗
+ such that Uαgn ↑ f as

n ↑ +∞.

Since a super-martingale which is the limit of a sequence of right con-

tinuous super-martingales is also right continuous, we shall state following

weaker forms of (HD2). A negative function f on E is nearly Borel for X if

for each probability µ on E there exist f1, f2 ∈ E with f1 ≤ f ≤ f2 such that

two processes (f1(Xt)) and (f2(Xt)) are Pµ-indistinguishable. A measurable

function f on (E,E ∗) is called optional if t 7→ f(Xt) is indistinguishable

from an (Ft)-optional process, and nearly optional if for any probability

measure µ on E, t 7→ f(Xt) is indistinguishable from an (F µ
t )-optional pro-

cess. A set A ∈ E ∗ is optional or nearly optional if so is 1A. Let E no be the

set of nearly optional subsets of E which is a σ-algebra.

Exercise 1.4 Prove that f is nearly optional if f is E no-measurable.

The next theorem follows from the section theorem as stated in Theo-

rem
t:section
0.0.3.

t:100425-2 Theorem 1.1.7 Assume that (HD1) holds. If X is strong Markov and each

α-excessive function is nearly optional, then (HD2) holds. Therefore if (Pt)

is Borel and X has strong Markov property, then (HD2) holds and each

α-excessive function is nearly Borel.

Proof. For any probability µ, an increasing sequence {Tn} of stopping times
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with T = limTn, and a non-negative bounded function g ∈ E ∗, we have by

strong Markov property

Eµ
(
e−αTnUαg(XTn)

)
= Eµ

∫ ∞

Tn

e−αtg(Xt)dt

→ Eµ

∫ ∞

T

e−αtg(Xt)dt = Eµ
(
e−αTUαg(XT )

)
.

Combining the assumption that Uαg is nearly optional, it follows that t 7→
Uαg(Xt) is right continuous from Theorem

t:section
0.0.3. Finally by Lemma

l:100428-2
1.1.6(3),

t 7→ f(Xt) is right continuous for any α-excessive function f .

Remark 1.1.8 Though Theorem
t:100425-2
1.1.7 hints that (HD2) may be equivalent

to strong Markov property, an example, when (Pt) is not Borel, is presented

by Salisbury to show that a right continuous Markov process with strong

Markov property may not be a right process.

t:0514-1 Theorem 1.1.9 Assume (HD1) holds. Let C be a linear subspace of C(E),

closed under function multiplication, which generates E . If, for any bounded

f ∈ C, the process t 7→ Uαf(Xt) is right continuous, then (HD2) holds.

Proof. It suffices to show that Uαg is nearly optional for non-negative and

bounded g ∈ E ∗. It is true by monotone class theorem for g ∈ E and it follows

from the proof of Theorem
t:100425-2
1.1.7 that t 7→ Uαg(Xt) is right continuous. Let

now g ∈ E ∗ be bounded. For any probability µ on E, there exist g1, g2 ∈ E

such that g1 ≤ g ≤ g2 and µU
α(g2−g1) = 0. Then for any t > 0, Uαg1(Xt) ≤

Uαg(Xt) ≤ Uαg2(Xt) and

Eµ(Uα(g2 − g1)(Xt) = µPtU
α(g2 − g1) ≤ eαtµUα(g2 − g1) = 0.

Therefore two processes Uαg2(X·) and U
αg1(X·) are Pµ-distinguishable, i.e.,

Uαg is nearly optional.
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Example 1.1.10 (α-subprocess) Let X be a right process on E with tran-

sition semigroup (Pt). For α > 0, it is known that P α
t = e−αtPt is also a

transition semigroup on E. Is it a transition semigroup of a right process?

Sure it is. But how do we construct the right process? Introduce the killing

operators (kt) on Ω:

Xs◦kt =

Xs, s < t,

∆, s ≥ t,
(1.14)

Intuitively kt makes no change before time t but sends the path after t to

cemetery. For x ∈ E, define probability Qx on (Ω,F ) by

Qx(Y ) = Ex

∫ ∞

0

Y ◦kud(−e−αu) = αEx

∫ ∞

0

Y ◦kue
−αudu, (1.15)

where Y is a bounded or non-negative random variable on Ω. Note that we

use Q for both probability and expectation. Let

Xα = (Ω,F ,Ft, Xt, θt,Qx)

which is called α-subprocess of X. It is easy to check that X is a right process

with transition semigroup (Pα
t ). In fact,

Qx(f(Xt)) = αEx

∫ ∞

0

f(Xt)◦kue
−αudu

= αEx

∫ ∞

t

f(Xt)e
−αudu

= e−αtEx(f(Xt)) = Pα
t f(x).

The verification of (HD2) is left for those who are interested.

Example 1.1.11 (Killing at leaving) Let X be a right process on E with

transition semigroup (Pt). Intuitively for a subset B, killing X at leaving

B shall give us a process which certainly inherits Markov property from X.
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Rigorously speaking, let B ∈ E o and T = TB the hitting time of B. Define

a map ω 7→ kTω on Ω by

kTω(t) =

ω(t), t < T ;

∆, t ≥ T.
(1.16)

Hence the new lifetime is ζ ∧ T .

Example 1.1.12 (Doob’s h-transform)

1.2 Feller processes and Lévy processes

A question we must ask is when and how we will have a right Markov process.

There are basically two ways: one is from Feller semigroup and the other is

through transformation as the example in the last section shows. In this

section we shall introduce Feller semigroup and prove that it may be realized

as a Markov process much better than a right process.

Definition 1.2.1 Let E be a locally compact metrizable space with a count-

able base. A transition semigroup (Pt) on E is called a Feller semigroup if

(1) PtC∞(E) ⊂ C∞(E) for each t > 0;

(2) for each f ∈ C∞(E),

lim
t↓0

||Ptf − f ||∞ = 0.

With other conditions, (2) above is equivalent to a weaker one: for each

f ∈ C∞(E) and x ∈ E, Ptf(x) → f(x) as t ↓ 0. The proof is a good exer-

cise. Since C∞(E) is a Banach space and Feller semigroup (Pt) is a strongly

continuous semigroup on C∞(E), its infinitesimal generator determines (Pt)

completely by Hille-Yosida theorem. The following theorem is actually a

corollary of regularization theorem of super-martingales.



CHAPTER 1. RIGHT MARKOV PROCESSES 17

Theorem 1.2.2 Let (Pt) be a Feller semigroup on E. Then (Pt) has a

realization which is a Borel right process, which is called a Feller process.

Proof. Add a point ∆ to E such that E∆ is compact and (Pt) is extended

to a probability transition semigroup on E∆. Any function f on E may be

always viewed as a function on E∆ by defining f(∆) = 0. In this way

C∞(E) = {f ∈ C(E∆) : f(∆) = 0}.

Let X = (Xt,P
x) be a realization of (Pt) on E∆. For any non-negative

f ∈ C∞(E) and α > 0, the process (e−αtUαf(Xt) : t ≥ 0) is a super-

martingale with respect to Px for each x ∈ E. It follows that t 7→ Uαf(Xt)

has right and left limits Px-almost surely. We may take a countable subset D

of {Uαf : α > 0, f ∈ C∞(E∆)} separating points in E. Since D is countable,

there exists N0 ⊂ Ω such that Px(N0) = 0 for all x ∈ E and for any g ∈ D

and ω ̸∈ N0, t 7→ g(Xt(ω)) has right and left limits. From the facts that D

separates points in E and any function in D is continuous, it follows that for

ω ̸∈ N0, t 7→ Xt(ω) has right and left limits. Let Y = (Yt) is the right limit

process of X, namely

Yt(ω) = lim
s↓↓t

Xt(ω), t ≥ 0, ω ̸∈ N0.

It suffices to show that Y is a version of X. Fix t ≥ 0 and s > 0. Take any

non-negative functions f, g ∈ C∞(E) and

Ex(f(Xt)g(Xs+t)) = Ex(f(Xt)Psg(Xt))

= Pt(fPsg)(x).

As s ↓ 0, Xs+t → Yt, Psg → g and hence we have

Ex(f(Xt)g(Yt)) = Pt(fg)(x) = Ex(f(Xt)g(Xt)).
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It follows from the monotone convergence theorem that for any continuous

function h ≥ 0 on E × E,

Ex[h(Xt, Yt)] = Ex[h(Xt, Xt)]

and we have Xt = Yt a.s.

Hence Y = (Yt) is a right continuous realization of (Pt) and it is easy to

see that Y is a Borel right process, due to Theorem
t:0514-1
1.1.9 and the fact that

Uαf is continuous for any f ∈ C∞(E).

An important example of Feller semigroup is the convolution semigroup

on Euclidean space, whose right continuous realization is called a Lévy pro-

cess.

Definition 1.2.3 A family of probability measures {νt : t > 0} on Rd is

called a convolution semigroup if

(1) νt ∗ νs = νt+s for any t, s > 0;

(2) νt → ε0 weakly as t ↓ 0 where ε0 is the point mass at 0.

Let {νt} be a convolution semigroup on Rd and set Pt(x, dy) = νt(dy−x).
Then (Pt) is a Feller semigroup on Rd and its right continuous realization is

called a Lévy process on Rd. Actually many well-known Markov processes

such as Brownian motion, Poisson process, stable process, are Lévy processes.

The law of a Lévy process is determined by its convolution semigroup, which

is in turn determined by its so-called Lévy exponent.

Let ν̂t denote the characteristic function of νt which is bounded and con-

tinuous on Rd. There exists a complex-valued continuous function φ on Rd

such that

ν̂t = exp(−tφ), (1.17) e:0514-2
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and this φ determines {νt} uniquely by the uniqueness of Fourier transform

and called the Lévy exponent of {νt}. Obviously φ(0) = 0 and it is well-

known that φ has the following representation: for x ∈ Rd,

φ(x) = i(a, x) +
1

2
(Sx, x) +

∫
Rd

(
1− ei(x,y) +

i(x, y)

1 + |y|2

)
π(dy), (1.18) e:0514-1

where a ∈ Rd, S is a d× d non-negative definite symmetric matrix, and π is

a Radon measure on Rd \ {0} having the following integrability∫
Rd

|y|2

1 + |y|2
π(dy) <∞. (1.19)

The matrix S and measure π are uniquely determined. But the vector a

depends on the way we write (
e:0514-1
1.18). Conversely given a function φ as in

(
e:0514-1
1.18), there must be a unique convolution semigroup {νt} on Rd such that

(
e:0514-2
1.17) holds. This characterization is the famous Lévy-Khinchin formula,

which tells us that every character about a Lévy process may be retrieved

from its Lévy exponent.

It is easy to verify that Lévy exponent of Brownian motion is φ(x) = 1
2
|x|2.

When π is a finite measure and

φ(x) =

∫
Rd

(1− ei(x,y))π(dy), (1.20)

the corresponding semigroup (resp., Lévy process) is called the compound

Poisson semigroup (resp., compound Poisson process). In this case, let λ =

π(Rd) and π0 = λ−1π. At each step, the process will stay freezing at a

position x for an exponentially distributed time with parameter λ and then

jump to somewhere according to distribution π0(· − x).

For a Lévy processX onRd with convolution semigroup {νt}, the Lebesgue
measure m is always an invariant measure for X, since it is easy to check that
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Rd m(dx)νt(A−x) = m(A) for any Borel subset A. X is called symmetric

if

νt(−A) = νt(A) (1.21)

for any Borel subset A of Rd. It can be seen that in this case

m(dx)νt(dy − x) = m(dy)νt(dx− y). (1.22)

Clearly X is symmetric if and only if its Lévy exponent φ is real, i.e.,

φ(x) =
1

2
(Sx, x) +

∫
Rd

(1− cos(x, y))π(dy), x ∈ Rd. (1.23)

Theorem 1.2.4 If X is symmetric, then any Radon invariant measure of

X is a multiple of Lebesgue measure if and only if its Lévy exponent φ has

unique zero.

1.3 Fine topology and balayage

The Blumenthal 0-1 law is easy to prove but very important.

Theorem 1.3.1 (Blumenthal) For any A ∈ F0 and x ∈ E, Px(A) is either

zero or one.

Proof. For any probability µ on E, there exists B ∈ F 0
0 such that Pµ(A△

B) = 0. By Markov property, Pµ(θ−1
0 A △ θ−1

0 B) = 0. Since θ−1
0 B = B,

Pµ(θ−1
0 A△ A) = 0. Then by Markov property again, for x ∈ E,

Px(A) = Px(A ∩ θ−1
0 A) = Ex[PX0(A);A] = (Px(A))2

and it follows that Px(A) = 0 or 1.
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If Blumethal 0-1 law was only talking about a set in F 0
0 , it would mean

nothing. Its importance is due to the fact that F0 is much richer than F 0
0 .

Before we go any further we should answer a question: for what kind of

subset B of E, the hitting time TB is a stopping time for the augmented

filtration (Ft)? Let’s start from two basic results. Given a filtration (Mt)

and a measurable space (S,S ), an S-valued stochastic process (Yt) is (Mt)-

progressively measurable if for any t ≥ 0, (s, ω) 7→ Ys(ω) is B([0, t]) ×
Mt/S -measurable.

Exercise 1.5 If Y is (Mt)-progressively measurable and φ : S → R is Borel

measurable, then so is t 7→ φ◦Yt.

For a set A ⊂ E, the hitting time and entrance time for A of X are

TA = inf{t > 0 : Xt ∈ A} and DA = inf{t ≥ 0 : Xt ∈ A}. It is easy to see

that TA is a terminal time, i.e., almost surely TA◦θt+ t = TA on {TA > t} for

all t > 0.

Lemma 1.3.2 (1) A right continuous and adapted process is progressively

measurable. Therefore (Xt) is progressively measurable. (2) If the filtration

satisfies the usual condition, the hitting time of a real progressively measur-

able process for a Borel set is a stopping time.

For f ∈ Sα, t 7→ f(Xt) is right continuous and so f is optional. Let E e

denote the σ-algebra generated by all excessive functions. Then

E ⊂ E e ⊂ E no ⊂ E ∗. (1.24)

Theorem 1.3.3 If A is nearly optional, then the hitting time TA is an (Ft)-

stopping time.

Proof. By the definition and lemma above, TA is an (F µ
t )-stopping time for

any probability µ on E and hence an (Ft)-stopping time.
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For any A ∈ E no, since {TA = 0} ∈ F0, P
x(TA = 0) = 0 or 1 for each

x ∈ E, by Blumenthal 0-1 law. If it is zero, we say x is regular for A or

otherwise x is irregular for A. Let Ar denote the set of regular points for

A. A nearly optional subset G of E is called finely open, if for any x ∈ G,

Px(TGc = 0) = 0 or equivalently x is irregular for Gc. Intuitively G is finely

open if X, starting from any point in G, will not leave G immediately. It is

routine to show that the set of finely open subsets in E is a topology, which

we call the fine topology of X on E. Since X is right continuous, any

point in an open subset G will not leave G immediately and hence an open

set is finely open, namely, the fine topology is really finer than the original

topology on E. The fine topology carries some intrinsic characteristics of the

process and is usually hard to trace. The following theorem presents a lot of

information on fine topology.

t:100427 Theorem 1.3.4 (1) If f is nearly optional, then f is finely continuous if and

only if t 7→ f(Xt) is right continuous. (2) If f ∈ Sα, f is finely continuous.

(3) For α > 0, the fine topology is generated by Sα.

Exercise 1.6 For A ∈ E no, Ar is finely closed and A∪Ar is the fine closure

of A.

t:100428-3 Theorem 1.3.5 For A ∈ E no, XTA
∈ A ∪ Ar on {TA <∞} almost surely.

Proof. By definition of TA, {XTA
̸∈ A} ⊂ {TA◦θTA

= 0}. Hence for any

x ∈ E, using strong Markov property

Px(XTA
̸∈ A ∪ Ar, TA <∞)

= Px(XTA
̸∈ A ∪ Ar, TA◦θTA

= 0, TA <∞)

= Ex[PXTA (TA = 0);XTA
̸∈ A ∪ Ar, TA <∞] = 0,

since PXTA (TA = 0) = 0 for XTA
̸∈ Ar.
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For an (Ft)-stopping time T , define α-balayage kernel

Pα
T (x,A) = Ex

[
e−αT1A(XT )

]
, x ∈ E,A ∈ E ∗. (1.25)

When α = 0, this means PT (x,A) = Px(XT ∈ A, T < ∞). If T = TA, write

P α
T as Pα

A .

Lemma 1.3.6 For g ∈ E ∗
+,

Pα
T U

αg(x) = Ex

[∫ ∞

T

e−αtg(Xt)dt

]
. (1.26)

Proof. By strong Markov property,

Pα
T U

αg(x) = Ex

[
e−αTEXT

(∫ ∞

0

e−αtg(Xt)dt

)]
= Ex

[∫ ∞

0

e−α(T+t)f(Xt+T )dt

]
= Ex

[∫ ∞

T

e−αtf(Xt)dt

]
.

l:0430-2 Lemma 1.3.7 (1) If f ∈ Sα, then Pα
T f ≤ f . (2) If, in addition, T is a

hitting time, then Pα
T (S

α) ⊂ Sα.

Proof. (1) Assume that f(x) < ∞. Since t 7→ e−αtf(Xt) is a non-negative

super-martingale, we then apply the Doob’s sampling theorem to get the

conclusion.

(2) By Markov property, we have

P α
t P

α
T = Pα

t+T◦θt .

For T is a terminal time, T ◦θt + t ≥ T for all t ≥ 0 a.s. Hence if f = Uαg, it

is obvious that Pα
T U

αg is α-super-median. T is a hitting time so T ◦θt+ t ↓ T
as t ↓ 0 and then

Pα
T (U

αE ∗
+) ⊂ Sα.
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Finally the conclusion follows from Lemma
l:100428-2
1.1.6(3) and Lemma

l:100428-1
1.1.5(3).

Definition 1.3.8 Let A ∈ E no. It is polar if Px(TA <∞) = 0 for all x ∈ E,

thin if Px(TA > 0) = 1 for all x ∈ E and semi-polar if A is contained in a

countable union of thin sets. A universally measurable subset A is potential

zero if U(x,A) = 0 for all x ∈ E. The definition may apply to any subset if

it is contained in a set with the respective property.

Intuitively, almost surely, X never meets a polar set and amount of time

in a set of potential zero has Lebesgue measure zero. Therefore a polar

set is potential zero. The following theorem asserts that semipolar sets are

somewhat between.

Theorem 1.3.9 If A is a semipolar set, then almost surely {t : Xt ∈ A} is

at most countable.

Proof. Assume thatA is thin. Let 0 < a < 1, andB = {x ∈ A : P 1
A1(x) ≤ a}.

Set T1 = TB, Tn+1 = Tn + T1◦θTn . It is enough to show that Tn → ∞ a.s.

Since B is thin, Br = and XTn ∈ B for Tn <∞ by Theorem
t:100428-3
1.3.5. By strong

Markov property

Ex[e−Tn+1 ] = Ex[e−Tn(e−T1)◦θTn ]

= Ex[e−TnEXTn (e−TB)]

≤ Ex[e−TnEXTn (e−TA)]

≤ aEx[e−Tn ],

and hence Ex[e−Tn ] → 0, i.e., Tn → ∞ a.s.

Hence it is evident that a semipolar set is potential zero.

Theorem 1.3.10 If A is nearly optional, then A \ Ar is semipolar.
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Proof. P 1
A1 is 1-excessive and finely continuous. Let

An = {x ∈ A : P 1
A1(x) ≤ 1− 1/n}.

Then A\Ar =
∪

nAn and it suffices to verify that An is thin. For any x ∈ E,

if P 1
A1(x) < 1, then P 1

An
1 < 1 or x ̸∈ Ar

n. If P 1
A1(x) = 1, then x is in the

finely open set {P 1
A1(x) > 1 − 1/n}, which is disjoint with An, and hence

x ̸∈ Ar
n. This means that An is thin.

Exercise 1.7 If f is α-super-median, define f̄ = limt↓0 e
−αtPtf . Show that

f̄ ∈ Sα, f ≥ f̄ and {f > f̄} is potential zero.

Definition 1.3.11 X or (Pt) is called transient if U is proper, i.e., there

exists a strictly positive g ∈ E ∗ such that Ug <∞.

Since 0-potential of the semigroup (e−αtPt) is Uα which is proper when

α > 0, (e−αtPt) is always transient when α > 0.

Lemma 1.3.12 If X is transient, then there exists strictly positive f such

that Uf ≤ 1.

Proof. Let g be as in the definition. Set

An = {g ≥ 1

n
, Ug ≤ n}

for n ≥ 1. Then An ↑ E. Clearly 1An ≤ ng and An is contained in a finely

closed set {Ug ≤ n}. By Theorem
t:100428-3
1.3.5, XTAn

∈ {Ug ≤ n} for TAn < ∞.

Now

U1An(x) = Ex

∫ ∞

TAn

1An(Xt)dt

= PAnU1An(x)

≤ nPAnUg(x)
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≤ nEx[Ug(XTAn
), TAn <∞] ≤ n2.

Then write f =
∑

n 2
−nn−21An which is strictly positive and Uf(x) ≤ 1.

It is shown in the proof that there exists An ∈ E ∗ such that An ↑ E and

each U1An is bounded.

f:transient Theorem 1.3.13 If X is transient and f ∈ S, then there exist gn ∈ E ∗
+ such

that Ugn ↑ f and both gn and Ugn are abounded for each n.

Proof. Take An as above. Set

hn = n1An , fn = (Uhn) ∧ f, gn,k = k(fn − P1/kfn).

Then Uhn is bounded, Uhn ↑ +∞ and∫ t

0

Psgn,kds = k(

∫ t

0

Psfnds−
∫ t+ 1

k

1
k

Psfnds)

= k(

∫ 1
k

0

Psfnds−
∫ t+ 1

k

t

Psfnds).

Since Ptfn ≤ PtUnh =
∫∞
t
Pshnds ↓ 0 as t ↑ ∞, Ugn,k increases with both n

and k. Hence Ugn,n ↑ f as n ↑ ∞.

1.4 Excessive measures

A σ-finite measure ξ is called α-excessive measure for X if for any t ≥ 0,

ξP α
t = e−αtξPt ≤ ξ. Note that any σ-finite measure ξ on (E,E ) may be

extended to a measure on E ∗ uniquely. By a result of Meyer, it follows

automatically that ξPα
t ↑ ξ as t ↓ 0. The notion of excessive measures is

dual to that of excessive functions. The set of α-excessive measures for X

is denoted by Excα or Excα(X) if necessary. Write Exc0 as Exc. If ξ is a
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σ-finite measure and ξPt = ξ for all t ≥ 0, ξ is called invariant for X. For

example, Lebesgue measure is always invariant for Lévy processes. If µ is a

measure and µUα is σ-finite, then µUα ∈ Excα which is called a potential.

Exercise 1.8 Let X be the translation to the right on R with speed one.

Verify that for any α ≥ 0, ξ(dx) = e−αxdx is invariant for (e−αtPt).

Lemma 1.4.1 (1) ξ ∈ Excα if and only if βξUα+β ≤ ξ for any β ≥ 0.

(2) If ξn ∈ Excα increases to a σ-finite measure, then limn ξn ∈ Excα.

(3) If ξ, η ∈ Excα, ξ ∧ η ∈ Excα.

(4) If 0 ≤ α < β, then Excα ⊂ Excβ.

m:transient Theorem 1.4.2 If X is transient and ξ ∈ Exc, then there exist measures

µn such that µnU ↑ ξ.

Proof. The proof is similar to Theorem
f:transient
1.3.13. Let An ↑ E with ξ(An) <∞.

Fix strictly positive g ∈ E ∗ with Ug ≤ 1. Set µn = n1An · ξ. Then µn is finite

and for any a > 0,

aµnU({g > a}) ≤ µnUg ≤ µn(1) <∞,

which implies µnU is σ-finite. Let ηn = µnU ∧ ξ. We claim ηn ↑ ξ. In fact,

let ξn =
∫ 1

0
(1An · ξ)Ptdt. Then ξn increases to

∫ 1

0
ξPtdt which is equivalent

to ξ. Denote by fn the density of ξn with respect to ξ and it follows that

limn fn > 0 a.e. ξ. Hence the density of (nξn)∧ξ with respect to ξ is (nfn)∧1
which increases to 1 a.e. ξ and this implies that ηn ↑ ξ since

ξ ≥ ηn =

∫ ∞

0

(n1An · ξ)Ptdt ∧ ξ = (nξn) ∧ ξ.

Define now νn = n(ηn − P1/nηn) and

ηn,k = k

∫ 1/k

ηnPtdt =

∫ 1

0

ηnPt/kdt.
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Then νnU = ηn,n. Clearly (ηn,k) increases with n and k since ηn is an

increasing sequence of excessive measures. Hence νnU is increasing and

νnU ≤ ηn ≤ ξ. Moreover for each k ≥ 1,

lim νnU = lim
n

∫ 1

0

ηnPt/ndt ≥ lim
n

∫ 1

0

ηkPt/ndt = ηk.

Combining the fact that ηn ↑ ξ, it leads to the conclusion.

In 70’s Meyer introduced energy functional for ξ ∈ Exc and f ∈ S which

generalizes the notion of energy in classical potential theory.

Definition 1.4.3 The energy functional L on Exc× S is defined by

L(ξ, f) = sup{µ(f) : µU ≤ ξ}. (1.27)

We assume that X is transient when discussing energy functional for

convenience. It is trivial that and L(µU, f) = µ(f) and if ξ1 ≤ ξ2, L(ξ1, ·) ≤
L(ξ2, ·).

Lemma 1.4.4 Let ξ ∈ Exc and f ∈ S. If µnU ↑ ξ, then L(µnU, f) ↑ L(ξ, f).

Proof. It is clear that L(µnU, f) is increasing and we need to check limn L(µnU, f) ≥
L(ξ, f). By Theorem

f:transient
1.3.13 there exist gn such that Ugn ↑ f . Hence for any

µU ≤ ξ,

µ(f) = lim
n
µ(Ugn) ≤ lim

n
ξ(gn) = lim

n
lim
k
µkU(gn)

= lim
k

lim
n
µkU(gn) = lim

k
µk(f) = lim

k
L(µkU, f).

p:0501-1 Proposition 1.4.5 Assume that ξ ∈ Exc and f ∈ S.

(1) If f1 ≤ f2 a.e. ξ, then L(ξ, f1) ≤ L(ξ, f2).

(2) If fn ↑ f a.e. ξ, L(ξ, fn) ↑ L(ξ, f).
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(3) L(ξ, Uf) = ξ(f).

(4) If ξn ↑ ξ, then L(ξn, f) ↑ L(ξ, f).
(5) If L(ξ, f) = 0, then f = 0 a.e. ξ.

Proof. (1) The set A = {f1 > f2} is finely open and ξ-null. For any µU ≤ ξ,

µU(A) = 0 implies that µ(A) = 0, or f1 ≤ f2 a.e. µ. Hence µ(f1) ≤ µ(f2),

i.e., L(ξ, f1) ≤ L(ξ, f2). (2) If fn ↑ f , then take µnU ↑ ξ and we have

lim
n
L(ξ, fn) = lim

n
lim
k
L(µkU, fn) = lim

k
lim
n
µk(fn)

= lim
k
µk(f) = lim

k
L(µkU, f) = L(ξ, f).

(3) Take µnU ↑ ξ. Then L(ξ, Uf) = limn µn(Uf) = limn(µnU)f = ξ(f).

(4) It suffices to show that limn L(ξn, f) ≥ L(ξ, f). Take any µU ≤ ξ and

Ugn ↑ f . Then

µ(f) = lim
n
µ(Ugn) ≤ lim

n
ξ(gn)

= lim
n

lim
k
ξk(gn) = lim

n
lim
k
L(ξk, Ugn)

= lim
k
L(ξk, f).

(5) Take Ugn ↑ f . By (3), ξ(gn) = 0. Since αξUα ↑ ξ, ξU(gn) = limα↓0 ξU
α(gn) =

0 and hence ξ(f) = 0.

c:0501-1 Corollary 1.4.6 Let ξ ∈ Exc and f ∈ S. (1) If ξ is purely excessive, i.e.,

ξPt ↓ 0 as t ↑ ∞, then

L(ξ, f) = lim
t↓0

t−1⟨ξ − ξPt, f⟩ = lim
α↑+∞

α⟨ξ − αξUα, f⟩. (1.28)

. (2) If f <∞ and Ptf ↓ 0 as t ↑ +∞,

L(ξ, f) = lim
t↓0

t−1⟨ξ, f − Ptf⟩ = lim
α↑∞

α⟨ξ, f − αUαf⟩. (1.29)
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Proof. For (1), define µt = t−1(ξ − ξPt). Then it is routine to check that

µtU ↑ ξ as t ↓ 0 and the conclusion follows from Proposition
p:0501-1
1.4.5(4). The

other statements are proved similarly.

It is seen from above that formally

L(ξ, f) = ⟨−ξL, f⟩ = ⟨ξ,−Lf⟩

where L, on the right, is the infinitesimal generator of (Pt), which is exactly

what the energy means classically.

Given a σ-finite measure m on (E,E ∗). Define Pm as

Pm(H) =

∫
E

Px(H)m(dx), H ∈ F∞, (1.30)

The process X still has strong Markov property with respect to measure Pm:

for any stopping time T and non-negative random variable Y on (Ω,F∞), it

holds Pm-a.s., on {T <∞},

Em[Y ◦θT ] = EXT [Y ]. (1.31)

Fix m ∈ Exc. A nearly optional set A is called m-polar if Pm(TA <∞) =

0, or Px(TA < ∞) = 0 for m-almost all x ∈ E. A polar set is certainly

m-polar. In general, we may define the capacity of A by

Γ(A) = L(m,PA1). (1.32)

It is clear that A is m-polar if and only if Γ(A) = 0. Moreover we have the

following properties.

Proposition 1.4.7 Let A,B,Bn ∈ E no.

(1) If A ⊂ B, then Γ(A) ≤ Γ(B).

(2) If Bn ↑ B, then Γ(Bn) ↑ Γ(B).

(3) Γ(A ∪B) + Γ(A ∩B) ≤ Γ(A) + Γ(B).



CHAPTER 1. RIGHT MARKOV PROCESSES 31

Lemma 1.4.8 Let A ∈ E no be finely open. If m(A) = 0, then A is m-polar.

Proof. Since m ∈ Exc, m(A) = 0 implies that mU(A) = 0, i.e., Pm-a.e., the

amount of time that X stays in A has Lebesgue measure zero and it can be

seen that X could never meet A, because, roughly speaking, when A is finely

open and X is right continuous, a sample path of X meeting A would stay

in A for a time interval.

A rigorous proof goes this way. Let g(x) = 1 − Ex(e−TAc ), which is zero

on Ac and strictly positive on A. Then g is finely continuous and t 7→ g(Xt)

is right continuous. If TA < ∞, then there exists t > 0 such that g(Xt) > 0.

The right continuity implies that g(Xs) > 0 for s ∈ [t, t + δ) with some

δ > 0 and hence
∫∞
0
g(Xt)dt > 0. However Em

∫∞
0
g(Xt)dt ≤ mU(A) = 0

and therefore Pm(TA <∞) = 0.

1.5 Additive functionals and Revuz measures

Additive functionals play an important role in theory of Markov processes.

If B = (Bt) is a standard Brownian motion on Rd and ϕ is a bounded Borel

function on Rd, it is well-known that the function u = u(t, x) satisfying

Schrödinger equation with initial condition

∂u

∂t
=

1

2
∆u− ϕu,

u(0, x) = f(x) (1.33)

may be written as

u(t, x) = Ex

(
f(Bt) exp

(
−
∫ t

0

ϕ(Bs)ds

))
, (1.34)
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which is called the Feynman-Kac formula. What we interested here is the

path integral ∫ t

0

ϕ(Bs)ds

which has additivity(∫ s

0

ϕ(Bu)du

)
◦θt =

∫ s

0

ϕ(Bu◦θt)du

=

∫ s

0

ϕ(Bu+t)du =

∫ s+t

t

ϕ(Bu)du

=

∫ t+s

0

ϕ(Bu)du−
∫ t

0

ϕ(Bu)du

for all t, s ≥ 0 a.s.

Now we give the definition of additive functionals. Let

X = (Ω,F ,Ft, Xt, θt,P
x)

be a right process on E with transition semigroup (Pt).

Definition 1.5.1 A non-negative right continuous process A = (At) is called

a raw additive functional, or simply RAF, of X if almost surely

At+s = At + As◦θt

holds for all t, s ≥ 0. A raw additive functional is an additive functional, or

simply AF, if it is adapted. A continuous additive functional of X is called

a PCAF simply.

By way of perfection, the additivity may be weakened: for any t, s ≥ 0,

it holds almost surely

At+s = At + As◦θt.

Clearly a raw additive functional A is always increasing, A0 = 0 and so

we denote by dAt the measure induced by t 7→ At. For a non-negative
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measurable function f on E,

t 7→
∫ t

0

f(Xs)dAs

is still a raw additive functional of X and denoted by f ∗A. If A is an additive

functional, so is f ∗ A.

Lemma 1.5.2 Let m ∈ Exc and A a raw additive functional of X. Define

φ(t) = Em(At), t ≥ 0.

Then φ(0) = 0, φ is increasing and concave. Furthermore t 7→ φ(t)
t

decreases

and

lim
t↓0

φ(t)

t
= lim

β↑∞
βEm

∫ ∞

0

e−βtdAt. (1.35)

Proof. It is obvious that φ(0) = 0 and φ is increasing. Then φ has right and

left limits at any point. By Markov property, for t, u ≥ 0

φ(t+ u) = Em(At+u) = φ(t) + Em(Au◦θt) = φ(t) + EmPt(Au)

and then φ(t+u) ≤ φ(t)+φ(u). It follows that if φ is infinite at some point

t0 > 0 then φ is infinite identically on (0,∞) since nφ(t0/n) ≥ φ(t0) and φ

is increasing. We may assume that ϕ is finite on [0,∞). In this case we have

φ(t+ u)− φ(t) ≤ φ(s+ u)− φ(s) (1.36)

for t > s ≥ 0 and u ≥ 0. Indeed, by Markov property, we have

φ(t+ u)− φ(t) = Em(At+u − At)

= Em [(As+u − As)◦θt−s]

= EmPt−s(As+u − As)

≤ Em(As+u − As) = φ(s+ u)− φ(s).
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An easy consequence is

φ(
t+ s

2
) ≥ φ(t) + φ(s)

2
(1.37)

for t, s ≥ 0. For t > 0 and ε > 0, 2φ(t− ε) ≥ φ(z+ ε) +φ(z− 3ε) and hence

φ(t−) ≥ φ(t+). This implies that φ is continuous. Therefore φ is concave

and t 7→ φ(t)
t

decreases.

It is easy to verify that φ is Lipshitz continuous on (δ,+∞) for any

δ > 0. Let φ′ be the right hand derivative of φ. Then it is right continuous

and decreasing. Now we have

βEm

∫ ∞

0

e−βtdAt = β

∫ ∞

0

e−βtdφ(t)

=

∫ ∞

0

βe−βtφ′(t)dt

=

∫ ∞

0

e−tφ′(t/β)dt

and hence limβ↑∞ βEm
∫∞
0
e−βtdAt ↑ φ′(0).

Applying this lemma, for any non-negative measurable function f on E,

1

t
Em

(∫ t

0

f(Xs)dAs

)
is increasing as t decreases. Write its limit as t ↓ 0 as ρmA (f), i.e.,

ρmA (f) = lim
t↓0

1

t
Em

∫ t

0

f(Xs)dAs = sup
t>0

1

t
Em

∫ t

0

f(Xs)dAs, (1.38)

which indicates its dependence on A, m and also X of course, though it is

not shown on the notation. It can be seen that ρmA is a measure on E and

called the Revuz measure (or characteristic measure) of A with respect to m

computed against X, or simply Revuz measure of A if no confusion will be

caused. Obviously a Revuz measure will not charge any m-polar set and the

Revuz measure of a PCAF will not charge any m-semipolar set.
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Clearly At = t is a trivial additive functional for any process. Then

Em

∫ t

0

f(Xs)ds =

∫ t

0

mPs(f)ds.

Since mPs ↑ m as s ↓ 0,

1

t
Em

∫ t

0

f(Xs)ds ↑ m(f)

as t ↓ 0, i.e., its Revuz measure is m itself. Another easy consequence is that

for a non-negative measurable g ≥ 0 on E,

ρmg∗A = g · ρmA . (1.39)

Introduce α-potential of A by

Uα
Af(x) = Ex

∫ ∞

0

e−αtf(Xt)dAt, α ≥ 0, f ∈ E ∗
+. (1.40)

We have similarly

Uγ
A = Uα

A + (α− γ)UγUα
A (1.41) e:resolvent2

for α > γ ≥ 0. If A is a raw additive functional of X, we have

P α
t U

α
Af(x) = e−αtEx

[(∫ ∞

0

e−αuf(Xu)dAu

)
◦θt

]
= Ex

(∫ ∞

t

e−αuf(Xu)dAu

)
and it can be seen that Uα

Af ∈ Sα.

l:0516-1 Lemma 1.5.3 If µU ∈ Exc and A is a raw additive functional, then

ρµUA = µUA.
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Proof. Fix a measurable function f ≥ 0 on E and we have by Fubini’s

theorem

ρµUA (f) = lim
t↓0

1

t
EµU

∫ t

0

f(Xs)dAs

= lim
t↓0

1

t

∫
µ(dx)

∫
U(x, dy)Ey

∫ t

0

f(Xs)dAs

= lim
t↓0

1

t
Eµ

∫ ∞

0

(∫ t

0

f(Xs)dAs

)
◦θudu

= lim
t↓0

1

t
Eµ

∫ ∞

0

du

∫ t+u

u

f(Xs)dAs

= lim
t↓0

1

t
Eµ

∫ ∞

0

(s− (s− t)+)f(Xs)dAs.

Then the monotone convergence theorem gives the conclusion.

Theorem 1.5.4 If X is transient,

ρmA (f) = L(m,UAf). (1.42)

Proof. SinceX is transient, there exists a sequence of potentials {µnU} which
increases to m. By Lemma

l:0516-1
1.5.3 and Proposition

p:0501-1
1.4.5(4), we have

ρmA (f) = lim
n
ρµnU
A (f) = lim

n
µnUAf = lim

n
L(µnU,UAf) = L(m,UAf).

That completes the proof.

For α > 0, the process corresponding the transition semigroup (Pα
t ) is

called α-subprocess and denoted by Xα, which is always transient. A raw

additive functional A of X is also a raw additive functional of Xα. We may

compute the Revuz measure of A with respect to m ∈ Exc ⊂ Excα against

Xα and denote it by ρm,α
A .
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Exercise 1.9 If A is a RAF of X, then A is also a RAF of Xα and

ρm,α
A (f) = lim

t↓0

1

t
Em

∫ t

0

e−αsf(Xs)dAs.

Therefore ρmA =↑ limα↓0 ρ
m,α
A .

It is then obvious that

ρm,α
A (f) = Lα(m,Uα

Af), (1.43)

where Lα is the energy functional of Xα.

Lemma 1.5.5 The Revuz measure ρm,α
A does not depend on α > 0 and

therefore ρm,α
A = ρmA .

Proof. Let α > γ > 0. Then by the resolvent equation, we have

Lα(m,Uαf) = m(f) = Lγ(m,Uγf)

= Lγ(m,Uαf + (α− γ)UγUαf)

for non-negative and measurable f on E. If h ∈ Sα, there exists a sequence of

potentials Uαfn increasing to h and hence it follows that h+(α−γ)Uγh ∈ Sγ

and

Lα(m,h) = Lγ(m,h+ (α− γ)Uγh). (1.44) e:energy2

Then by the resolvent equation (
e:resolvent2
1.41) and plugging Uα

Af ∈ Sα in (
e:energy2
1.44), we

have the conclusion.

1.6 Dual processes

Suppose that X = (Xt,P
x) and X̂ = (X̂, P̂x) are two right Markov processes

on E with transition semigroups (Pt) and (P̂t) respectively. Let m be a σ-

finite measure on E. We may assume that both are defined on the canonical

space of right continuous paths on E.
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Definition 1.6.1 The processes X and X̂ are called dual relative to m if∫
g(x)Ptf(x)m(dx) =

∫
f(x)P̂tg(x)m(dx), (1.45) e:duality

for non-negative measurable functions f, g on (E,E ∗).

Clearly in this case m must be excessive for both X and X̂ and if ĥ ∈
S(X̂), then ĥ ·m ∈ Exc(X). Naturally we have measures Pm and P̂m:

Pm =

∫
E

Pxm(dx), P̂m =

∫
E

P̂xm(dfx). (1.46)

Define the reversal operator γt on {t < ζ}:

γtω(s) = ω(t− s), s ∈ [0, t],

i.e., Xs◦γt = Xt−s.

l:reverse Lemma 1.6.2 If Y is a F 0
t -measurable non-negative random variable, then

Em(Y ◦γt; t < ζ) = Êm(Y ; t < ζ). (1.47)

Proof. By the monotone class theorem, it suffices to verify for

Y = f1(Xt1) · · · fn(Xtn),

where 0 = t1 < · · · < tn = t. The equation (
e:duality
1.45) is equivalent tom(dx)Pt(x, dy) =

m(dy)P̂t(y, dx). Hence

Em(Y ◦γt) = Em[fn(X0)fn−1(Xtn−tn−1) · · · f2(Xtn−t2)f1(Xt)]

=

∫
fn(xn) · · · f1(x1)m(dxn)Ptn−tn−1(xn, dxn−1) · · ·Pt2(x2, dx1)

=

∫
fn(xn) · · · f1(x1)P̂tn−tn−1(xn−1, dxn) · · · P̂t2(x1, dx2)m(dx1)

= Êm(f1(Xt1)f2(Xt2) · · · fn(Xtn))

= Êm(Y ).
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The following theorem is due to J.B.Walsh [?].

Theorem 1.6.3 Pm-a.e. X = (Xt) has left limits for t ∈ (0, ζ). If f ∈
S(X̂α), then Pm-a.s., t 7→ f(Xt−) is left continuous.

Proof. Let X|Q denote the process {Xt : t ≥ 0 rational}. Fix a rational

t > 0. The event

At = {X|Q has left limits at alls ∈ (0, t), t < ζ}

is measurable with respect to F 0
t . Clearly if t < ζ,

γ−1
t (At) = {X|Q has right limits at alls ∈ (0, t), t < ζ}. (1.48)

By Lemma
l:reverse
1.6.2, Pm(Ac

t) = P̂m(γ−1Ac
t) and it follows that

Pm

(∪
t∈Q

Ac
t

)
= P̂m

(∪
t∈Q

γ−1
t Ac

t

)
= 0.

This means that Pm-a.e., X|Q has left limits for t < ζ and, due to the right

continuity of X, X has left limits for t < ζ. The second assertion will be

proved later.

Moreover (Ûf) · m = (f · m)U by duality for measurable f ≥ 0. Note

that X and X̂ are mutually dual and so the dual statement of any assertion

also holds. Define the energy functional of X on S(X̂)× S(X)

L(ĥ, h) = L(ĥ ·m,h), ĥ ∈ S(X̂), h ∈ S(X), (1.49)

and L̂ the energy functional of X̂, and Lα for dual Xα and X̂α similarly.

Note that we use the same L for two kinds of energy functionals.

Lemma 1.6.4 If X is transient, then

Lα(ĥ, h) = L̂α(h, ĥ) (1.50)

for h ∈ S(X) and ĥ ∈ S(X̂),
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Proof. Let h = Uf with measurable f ≥ 0. Then we have

L(ĥ, h) =

∫
f(x)ĥ(x)m(dx)

= L̂((f ·m)Û , ĥ)

= L̂(Uf ·m, ĥ).

Now for any h ∈ S(X), we may take a sequence Ufn of potentials increasing

to h and it holds

L(ĥ, Ufn) = L̂(Ufn, ĥ).

Let n go to infinity and applying Proposition
p:0501-1
1.4.5(2)(4) we get to the con-

clusion.

We now prove the useful Revuz formula.

Theorem 1.6.5 Let A be a RAF of X and Â a RAF of X̂. Then∫
E

f(x)Uα
Ag(x)ρ

m
Â
(dx) =

∫
E

g(x)Ûα
Â
f(x)ρmA (dx). (1.51)



Chapter 2

Potential analysis of

multiplicative functionals

2.1 Multiplicative functionals

Definition 2.1.1 A right continuous adapted stochastic process M = (Mt)

valued in [0, 1] on Ω is called a multiplicative functional of X if almost surely

Mt+s =Mt ·Ms◦θt, t, s ≥ 0. (2.1)

Two trivial examples of multiplicative functionals are

Mt = exp

(
−
∫ t

0

f(Xs)ds

)
, f ≥ 0;

Mt = 1{t<TA},

where TA is a hitting time. Actually if T is a terminal and stopping time,

then Mt = 1{t<T} is a mutiplicative functional. On the other hands, if A is

an AF, then its usual exponential Mt = e−At is a multiplicative functional.

41
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Given a multiplicative functional M . Clearly M is decreasing and M0 =

M2
0 , i.e., M0 = 0 or 1 almost surely. If M0 = 0, M is identically 0. Let

EM = {x ∈ E : Px(M0 = 1) = 1},

SM = inf{t :Mt = 0}.

The set EM is called the set permanent points for M and SM the life time

of M . If SM ≥ ζ, then we say M never vanishes.



Chapter 3

Dirichlet forms

In this part we study the analytic aspect of Markov semigroups and their

associated Markov processes. We outline the beautiful theory of Markov

semigroups, which is the natural product by combining Hille-Yosida’s theory

of one-parameter semigroups with the Markov property.

We begin with a short summary of Hille-Yosida’s theory of semigroups

on Banach spaces, which is necessary for the study of Markov semigroups.

We then present a few special features about symmetric Markov semigroups

and their associated Dirichlet spaces.

3.1 Contraction semigroups and infinitesimal

generators

Recall that a time-homogenous Markov chain (Xt)t≥0 on a discrete state

space M is described through its transition probability

pij(t) = P (Xt = j|X0 = i) .

43
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The transition matrix P (t) = (pij(t)) satisfies the Chapman-Kolmogorov

equation

pij(s+ t) =
∑
k∈M

pik(s)pkj(t) for any s, t > 0 .

The transition matrix (pij(t)) allows us to define a linear operator Pt on the

space Cb(M) of bounded (continuous) functions on M by

(Ptf) (i) =
∑
j∈M

f(j)pij(t) ∀i ∈M .

If Cb(M) is endowed with the supremum norm

∥f∥ = sup
i∈M

|f(i)| ∀f ∈ Cb(M)

then Cb(M) is a Banach space, and each linear operator Pt : Cb(M) → Cb(M)

is a contraction ∥Ptf∥ ≤ ∥f∥ for any f ∈ Cb(M). The Chapman-Kolmogorov

equation implies that (Pt)t>0 is a semigroup on Cb(M), i.e. Pt(Psf) = Pt+sf .

It is thus not surprising that the theory of 1-parameter semigroups plays a

fundamental rôle in the theory of Markov processes.

Let now B be a (real or complex) Banach space with a norm ∥·∥. Typical
examples are Lp-spaces on σ-finite measure spaces. A linear operator T :

B → B is bounded if there is a non-negative constant C such that ∥T (x)∥ ≤
C∥x∥ for any x ∈ B. In this case, the least C ≥ 0 such that the previous

statement is true is called the norm of T , denoted by ∥T∥. A basic fact in

functional analysis is that a linear operator is continuous if and only if it

is bounded. For simplicity, if no confusion may arises, T (x) will be simply

written as Tx.

A linear operator T : B → B is called a contraction if ∥T∥ ≤ 1.

A one-parameter family (Pt)t≥0 of bounded linear operators Pt : B → B

is a semigroup (of linear operators) on B, if
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1. P0 = I the identity operator on B,

2. (Pt)t≥0 satisfies the semigroup property: Pt+s = PtPs for every s,

t ≥ 0, where PtPs is the composition of operators, that is, PtPs(f) =

Pt(Ps(f)).

A semigroup (Pt)t≥0 is strongly continuous if

lim
t↓0

Ptx = x for every x ∈ B .

A semigroup (Pt)t≥0 is a semigroup of contractions (or called contraction

semigroup) if each Pt is a contraction on B, that is, ∥Pt∥ ≤ 1.

If (Pt)t≥0 is a semigroup on B, then its infinitesimal generator (or simply

generator) is the (unbounded) linear operator (L,D(L)) defined by

Lx = lim
t↓0

1

t
(Ptx− x)

where x ∈ D(L), and

D(L) =

{
x ∈ B : lim

t↓0

1

t
(Ptx− x) exists

}
.

The following theorem summarizes the basic properties of the infinitesi-

mal generator of a semigroup, the proofs leave for the reader as an exercise.

th1.1 Theorem 3.1.1 Let (Pt)t≥0 be a strongly continuous semigroup on Banach

space B, and let L be its infinitesimal generator with domain D(L).

1) The map t→ Ptx is uniformly continuous for every x ∈ B, and

lim
h↓0

1

h

∫ t+h

t

(Psx) ds = Ptx ∀t ≥ 0, x ∈ B. (3.1) se001

Moreover,
∫ t

0
(Psx)ds ∈ D(L) for t > 0, x ∈ B, and

L

∫ t

0

(Psx) ds = Ptx− x .
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2) If x ∈ D(L), so is Ptx,

d

dt
Ptx = L(Ptx) = Pt(Lx) (3.2) sse04

and

Ptx− Psx =

∫ t

s

(PuLx) du

=

∫ t

s

(LPux) du = L

(∫ t

s

(Pux) du

)
.

As a consequence, D(L) is dense in B. Therefore the infinitesimal gen-

erator L of a strongly continuous semigroup on a Banach space B is densely

defined linear operator on B, each Pt leaves D(L) invariant, L commutates

with Pt, and for any x ∈ B the integral
∫ t

0
(Psx)ds (for t > 0) is an element

in D(L).

Generally, the infinitesimal generator L of a strongly continuous semi-

group on a Banach space B is unbounded, and in general D(L) ̸= B. To

further investigate the properties of the densely defined linear operator L,

we need the following

def01 Definition 3.1.2 The graph of a densely defined linear operator (T,D(T ))

on a Banach space B is

G(T ) = {(x, Tx) : x ∈ D(T )}

which is a subset of the product space B×B (endowed with norm ∥(x, y)∥ =

∥x∥+ ∥y∥). T is called a closed operator if G(T ) is a closed subset of B ×B

(and thus G(T ) itself is a Banach space). In other words, T is closed if for

every sequence {xn} of D(T ) such that xn → x and Txn → y, then x ∈ D(T )

and Tx = y.

propy01 Proposition 3.1.3 The infinitesimal generator (L,D(L)) of a strongly con-

tinuous contraction semigroup (Pt)t≥0 is a closed operator.
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Proof. Suppose xn ∈ D(L) → x and Lxn → y. We have to show that

x ∈ D(L) and Lx = y. Since Lxn → y, {Lxn} is bounded in B and

∥PsL(xn)∥ ≤ ∥L(xn)∥ ≤ sup ∥L(xn)∥ for all s ≥ 0.

A computation leads us to

Ptx− x

t
=

1

t

(
Pt( lim

n→∞
xn)− lim

n→∞
xn

)
= lim

n→∞

1

t
(Pt(xn)− xn) (as Pt is continuous)

= lim
n→∞

1

t

∫ t

0

PsL(xn)ds

=
1

t

∫ t

0

lim
n→∞

PsL(xn)ds (Dominated Convergence)

=
1

t

∫ t

0

Psyds

and

lim
t↓0

1

t
(Ptx− x) = lim

t↓0

1

t

∫ t

0

Psyds = y .

Therefore x ∈ D(L) and Lx = y.

It is usually very difficult to determine the domain D(L) of the infinitesi-

mal generator L. Since the graph G(L) of L obviously determines L uniquely,

and since G(L) is a closed subspace of B ×B, any dense subset of G(L) will

determine G(L) and therefore the closed linear operator L uniquely. A subset

C of D(L) is a core for a closed linear operator (L,D(L)) if {(x, Lx) : x ∈ C}
is dense in G(L). Precisely, for any x ∈ D(L) there is a sequence {xn} in C

such that xn → x and Lxn → y for some y ∈ B.

Another important concept associated with a strongly continuous con-

traction semigroup (Pt)t≥0 is the resolvent {Rλ : λ > 0} which we have met

in the previous chapter. By definition

Rλ =

∫ ∞

0

e−λtPtdt .
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Since for every x ∈ B

∥Rλx∥ =

∥∥∥∥∫ ∞

0

e−λt (Ptx) dt

∥∥∥∥
≤ 1

λ
∥x∥ ,

each Rλ (for λ > 0) is a bounded linear operator of B with ∥Rλ∥ ≤ 1/λ.

{Rλ : λ > 0} is a commutative family of bounded linear operators of B, and

the semigroup property of (Pt)t≥0 implies that {Rλ : λ > 0} satisfies the

resolvent equation:

Rλ −Rµ = (µ− λ)RλRµ ∀λ, µ > 0 .

In particular, the region {Rλx : x ∈ B} does not depend on λ > 0.

propy03 Proposition 3.1.4 If (L,D(L)) is the infinitesimal generator of a strongly

continuous semigroup (Pt)t≥0 of contractions of B, then for any λ > 0, λ−L

(where λ means the multiplier λI) is invertible and Rλ = (λ − L)−1. In

particular, for every λ > 0 the region of Rλ

{Rλx : x ∈ B} ⊂ D(L) .

Proof. We only need to show that for every x ∈ B

(λ− L)(Rλx) = x .

Firstly show that Rλx. In fact

Ph (Rλx)−Rλx = Ph

∫ ∞

0

e−λt (Ptx) dt−
∫ ∞

0

e−λt (Ptx) dt

=

∫ ∞

0

e−λt (Pt+hx) dt−
∫ ∞

0

e−λt (Ptx) dt

= eλh
∫ ∞

h

e−λt (Ptx) dt−
∫ ∞

0

e−λt (Ptx) dt
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=
(
eλh − 1

) ∫ ∞

h

e−λt (Ptx) dt−
∫ h

0

e−λt (Ptx) dt

and we then have

lim
h↓0

1

h
(Ph (Rλx)−Rλx) = lim

h↓0

eλh − 1

h

∫ ∞

h

e−λt (Ptx) dt

− lim
h↓0

1

h

∫ h

0

e−λt (Ptx) dt

= λRλx− x .

Therefore Rλx ∈ D(L) and

L (Rλx) = λRλx− x

which proves the claim.

Therefore any real λ > 0 belongs to the resolvent set of L. The resolvent

set ρ(L) of L is the set of all complex numbers λ for which λI−L is invertible,

i.e. (λI − L)−1 is a bounded linear operator on B. The family

{Rλ ≡ (λI − L)−1 : λ ∈ ρ(L)}

of bounded linear operators is also called the resolvent of L. The complement

of the resolvent set of L is called the spectrum of L denoted by σ(L).

3.2 Hille-Yosida theorem

The necessary and sufficient condition for a given densely defined linear oper-

ator L (with domain D(L)) to be the infinitesimal generator of some strongly

continuous contraction semigroup (Pt)t≥0 is known as Hille-Yosida’s theory

of one-parameter semigroups.
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h-yth1 Theorem 3.2.1 (Hille-Yosida) A linear (unbounded) operator L is the in-

finitesimal generator of a strongly continuous semigroup of contractions on

a Banach space B if and only if

1) L is closed and the D(L) is dense in B, i.e. L is a densely defined

closed operator.

2) (0,+∞) ⊂ ρ(L) and ∥Rλ∥ ≤ 1/λ for every λ > 0. In other words

∥(λ− L)x∥ ≥ λ∥x∥

for every λ > 0 and x ∈ D(L).

We have proven the necessity of two conditions 1 and 2 (see Proposition
propy03
3.1.4) and

(λI − L)−1 =

∫ ∞

0

e−λtPtdt ∀λ > 0,

namely, the resolvent of L is the Laplace transform of its semigroup (Pt)t≥0.

We shall prepare a few lemmas before proceeding to prove Hille-Yosida

theorem.

l:hy1 Lemma 3.2.2 Let L satisfy the conditions 1 and 2 of Theorem
h-yth1
3.2.1, and

set Rλ = (λI − L)−1. Then

lim
λ→∞

λRλx = x ∀x ∈M .

Indeed, consider first those x ∈ D(L). Then

λRλx− x = LRλx = RλLx

so that

∥λRλx− x∥ = ∥RλLx∥

≤ 1

λ
∥Lx∥
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as λ→ ∞. However D(L) is dense in B and ∥λRλx∥ ≤ 1, therefore λRλx→
x as λ→ ∞ for every x ∈ B. That proves Claim 1.

For every λ > 0, the Yosida approximation of L is defined as

Lλ = λLRλ = λ2Rλ − λI .

Note Lλ is a bounded linear operator for each λ > 0, and moreover, if

x ∈ D(L) then

LRλx = RλLx

and we have

ccc01 Corollary 3.2.3 Let L satisfy the conditions 1 and 2 of Theorem
h-yth1
3.2.1.

Then

lim
λ→∞

Lλx = Lx ∀x ∈ D(L) .

If T is a bounded linear operator on B, then its exponential eT is given

by the formula

eT (x) =
∞∑
k=0

1

k!
(T kx)

which is again a bounded linear operator on B. Indeed

∥eT∥ ≤
∞∑
k=0

1

k!
∥T k∥

≤
∞∑
k=0

1

k!
∥T∥k = e∥T∥ .

If S and T are two bounded linear operator and if T and S commute, then

eT+S = eT eS .

In particular for a bounded linear operator T on a Banach space, then

(etT )t∈C is a commutative family of bounded linear operators, and

∥etT (x)− x∥ =

∥∥∥∥∥
∞∑
k=1

tk

k!
(T kx)

∥∥∥∥∥
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≤
∞∑
k=1

tk

k!
∥T∥k∥x∥

=
(
et∥T∥ − 1

)
∥x∥

so that

∥etT − I∥ ≤ et∥T∥ − 1 → 0 as t→ 0 .

Moreover ∥∥∥∥etT (x)− x

t
− Tx

∥∥∥∥ =

∥∥∥∥∥
∞∑
k=2

tk−1

k!
(T kx)

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
k=0

tk+1

(k + 2)!
(T k+2x)

∥∥∥∥∥
≤ t∥T∥2

∥∥∥∥∥
∞∑
k=0

tk

k!
(T kx)

∥∥∥∥∥
≤ t∥T∥2et∥T∥∥x∥

Therefore (etT )t≥0 is a strongly semigroup of bounded linear operators with

infinitesimal generator T .

Since Lλ is bounded for any λ > 0, it is the infinitesimal generator of the

strongly continuous semigroup

etLλ =
∞∑
n=0

tn

n!
Ln
λ .

Moreover, since λI and Rλ commute, so that etLλ =e−λtetλ
2Rλ and therefore

for any t > 0

∥etLλ∥ ≤ e−λt

∞∑
n=0

t2n

n!
λ2n∥Rλ∥n

= e−λteλ
2t∥Rλ∥

≤ 1.
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Hence for each λ > 0, (etLλ)t≥0 is a semigroup of contractions on B with

infinitesimal generator Lλ. The next lemma shows that etLλ converges as

λ→ ∞. The limit shall be the strongly continuous semigroup of contractions

with infinitesimal generator L.

l:hy2 Lemma 3.2.4 Under the same assumption as in Lemma
l:hy1
3.2.2. For any

λ, µ > 0 ∥∥etLλx− etLµx
∥∥ ≤ t ∥Lλx− Lµx∥ .

Therefore, for every x ∈ D(L), etLλx converges as λ → ∞ uniformly in t in

any bounded interval.

Let us prove this claim. Since all bounded linear operators etLλ , etLµ , Lλ

and Lµ commute with each other, consequently

etLλx− etLµx =

∫ t

0

d

ds

(
estLλet(1−s)Lµx

)
ds

= t

∫ t

0

estLλet(1−s)Lµ (Lλx− Lµx) ds ,

together with the fact that ∥estLλ∥ ≤ 1 and ∥et(1−s)Lµ∥ ≤ 1, it follows thus

that ∥∥etLλx− etLµx
∥∥ ≤ t

∫ t

0

∥estLλet(1−s)Lµ (Lλx− Lµx) ∥ds

≤ t∥Lλx− Lµx∥ .

Let x ∈ D(L). Then∥∥etLλx− etLµx
∥∥ ≤ t∥Lλx− Lµx∥

= t∥Lλx− Lx∥+ t∥Lµx− Lx∥ ,

by Corollary
ccc01
3.2.3, it thus follows that etLλx converges as λ→ ∞ uniformly

in t in any bounded interval. That proves the conclusion.
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We are now in a position to complete the proof of the Hille-Yosida theo-

rem
h-yth1
3.2.1. Let

Ptx ≡ lim
λ→∞

etLλx ∀x ∈ D(L), t ≥ 0 . (3.3) uo001

Then ∥Ptx∥ ≤ 1. Since D(L) is dense in B, so that limλ→∞etLλx exists

for every x ∈ B. Moreover the convergence in (
uo001
3.3) is uniform in t on any

bounded interval, so that

Pt+sx = lim
λ→∞

e(t+s)Lλx = lim
λ→∞

etLλ
(
esLλx

)
= lim

λ→∞
etLλ

(
lim
λ→∞

esLλx
)

= Pt(Psx)

and

lim
t↓0

∥Ptx− x∥ = lim
t↓0

∥ lim
λ→∞

(
etLλ(x)− x

)
∥

= ∥ lim
λ→∞

lim
t↓0

(
etLλ(x)− x

)
∥

= 0 .

Therefore (Pt)t≥0 is a strongly continuous semigroup of contractions on B.

Next we prove that L is the infinitesimal generator of (Pt)t≥0. Let (A,D(A))

be the infinitesimal generator of (Pt)t≥0. If x ∈ D(L) then

Ptx− x = lim
λ→∞

(
etLλ(x)− x

)
= lim

λ→∞

∫ t

0

esLλ(Lλx)ds

=

∫ t

0

lim
λ→∞

esLλ(Lλx)ds =

∫ t

0

lim
λ→∞

esLλ( lim
λ→∞

Lλx)ds

=

∫ t

0

Ps(Lx)ds

and therefore x ∈ D(A) and Ax = Lx. Since 1 belongs to the resolvent sets

both of A and L we therefore have

(I − A)D(L) = (I − L)D(L) = B
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so that

D(A) = (I − A)−1B = (I − L)−1B

= D(L) .

Therefore D(A) = D(L) and L = A.

The contraction semigroup (Pt)t≥0 with infinitesimal generator L some-

times is denoted by etL, although etL is not necessarily given by power series.

co41 Corollary 3.2.5 Let L be the infinitesimal generator of a strongly contin-

uous, contraction semigroup (Pt)t≥0 on a Banach space B, and let Lλ =

λ2Rλ−λI (where Rλ = (λI−L)−1) be the Yosida approximation of L. Then

Ptx = lim
λ→∞

etLλx

uniformly in t on any bounded interval.

co42 Corollary 3.2.6 Under the same assumption in the previous corollary. The

resolvent set ρ(L) ⊇ {λ : Reλ > 0} and

∥(λI − L)−1∥ ≤ 1

Reλ

for any λ such that such Reλ > 0.

Proof. If Reλ > 0 then

Rλ ≡
∫ ∞

0

e−λt(Ptx)dt

is well defined bounded linear operator, which is (λI − L)−1.

3.3 Contraction semigroups on Hilbert spaces

In this sub-section we specialize our study to a class of strongly continuous

contraction semigroups of symmetric linear operators on a Hilbert space H.
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A bounded linear operator T on a (real) Hilbert space H is called a

symmetric operator if

⟨Tx, y⟩ = ⟨x, Ty⟩

where ⟨x, y⟩ is the inner product of H. The adjoint operator L∗ of a densely

defined linear operator L (with domain D(L)) on H is defined as the follow-

ing: x ∈ D(L∗) if

|⟨Ly, x⟩| ≤ Cx∥y∥ for every y ∈ D(L)

for some non-negative constant Cx, and L
∗x is the unique element in H (F.

Riesz’s representation) such that

⟨Ly, x⟩ = ⟨y, L∗x⟩ for every y ∈ D(L) .

L∗ is a closed linear operator on H. If L∗ = L, then L is called a self-adjoint

operator.

The fundamental tool in the study of self-adjoint operators is the spectral

decomposition theorem. To appreciate this theorem, let us investigate an

example which is in turn to be the general (function) model for self-adjoint

operators.

Let (Ω,F , µ) be a finite measure space, and let H = L2(Ω,F , µ). If

ϕ is a real-valued measurable function on Ω, then we use Tϕ to denote the

multiplier operator

Tϕx = ϕx for any x ∈ H

and

D(Tϕ) = {x ∈ H : ϕx ∈ L2(Ω,F , µ)} .

Then Tϕ is a self-adjoint operator on H, with σ(Tϕ) the essential range of

ϕ. We note that if ϕ is an indicator function of a measurable subset A, then

T1A : L2(Ω,F , µ) → L2(A,F , µ) is a projection.
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Given a real-valued measurable function ϕ we associate it with a right-

continuous, increasing family {Eλ : λ ∈ R} of projections on H defined by

Eλ = T1{ϕ<λ} . Obviously λ→ ⟨Eλx, x⟩ is increasing so that

λ→ ⟨Eλx, y⟩

is right-continuous and has finite variation. Moreover limλ→−∞Eλ = 0 and

limλ→∞Eλ = I. If x ∈ H such that ∥x∥ = 1, then

Px(dw) ≡ x(w)2µ(dw)

is a probability measure, and

⟨Eλx, x⟩ =
∫
X

1{ϕ<λ}x
2dµ

= Px {ϕ(w) < λ}

is the distribution function of ϕ under the probability measure Px. It is seen

that ϕ is square-integrable with respect to Px if and only if

Ex|ϕ|2 =
∫
X

|ϕ|2dPx=

∫
X

|ϕ|2x2dµ

=

∫ ∞

−∞
|λ|2d⟨Eλx, x⟩ < +∞ ;

which implies that x ∈ D(Tϕ) if and only if∫ ∞

−∞
λ2d⟨Eλx, x⟩ < +∞ .

Moreover ∫ ∞

−∞
λd⟨Eλx, x⟩ = Ex (ϕ) =

∫
X

ϕdPx

=

∫
X

ϕx2dµ
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and therefore

⟨Tϕx, x⟩ =
∫ ∞

−∞
λd⟨Eλx, x⟩ .

By the polarization identity, we thus have

⟨Tϕx, y⟩ =
∫ ∞

−∞
λd⟨Eλx, y⟩ .

The last equality shows that Tϕ has a spectral decomposition

Tϕ =

∫ ∞

−∞
λdEλ =

∫
σ(Tϕ)

λdEλ

as λ→ Eλ increases only on the spectrum σ(Tϕ), and

D(Tϕ) =

{
x :

∫ ∞

−∞
λ2d⟨Eλx, x⟩ < +∞

}
.

One of the main achievement in Functional Analysis is the following spec-

tral theorem, which claims that the above spectral decomposition holds for

any self-adjoint operator.

Theorem 3.3.1 Let L be a self-adjoint operator on a Hilbert space H.

1) The spectrum σ(L) ⊂ R.

2) There is a right-continuous and increasing family {Eλ : λ ∈ R} of

projections in H such that

lim
λ→−∞

Eλ = 0 and lim
λ→∞

Eλ = I ;

λ→ Eλ increases only on σ(L),

D(L) =

{
x ∈ H :

∫ ∞

−∞
λ2d⟨Eλx, x⟩ < +∞

}
and

L =

∫ +∞

−∞
λdEλ =

∫
σ(L)

λdEλ
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in the sense that

⟨Lx, y⟩ =
∫ +∞

−∞
λd⟨Eλx, y⟩ ∀x ∈ D(L) and y ∈ H,

where the right-hand side is the Riemann-Stieltjes integral.

A self-adjoint linear operator L is positive-definite if ⟨Lx, x⟩ ≥ 0 for every

x ∈ H. Such a self-adjoint operator possesses a spectral decomposition

L =

∫ +∞

0

λdEλ .

Consider a self-adjoint linear operator L which is negative-definite, that

is, −L is positive-definite, and let −L have the spectral decomposition

−L =

∫ +∞

0

λdEλ

or equivalently

L =

∫ +∞

0

−λdEλ .

Define

Pt =

∫ +∞

0

e−λtdEλ

which is a self-adjoint operator, and

|⟨Ptx, x⟩| ≤
∫ +∞

0

e−λtd⟨Eλx, x⟩

≤
∫ +∞

0

d⟨Eλx, x⟩

= ∥x∥2 .

Therefore each Pt is a contraction on H, hence (Pt)t≥0 is a strongly contin-

uous contraction semigroup of symmetric operators on H with infinitesimal

generator L. Conversely, it is obvious that the infinitesimal generator of a

strongly continuous contraction semigroup of symmetric linear operators on

a Hilbert space H is a negative-definite self-adjoint operator.
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h-ys01th Theorem 3.3.2 L is the infinitesimal generator of a strongly continuous

contraction semigroup of symmetric linear operators on a Hilbert space H if

and only if L is a negative-definite self-adjoint operator. If

L =

∫ +∞

0

−λdEλ (3.4) eqssu01

is the spectral decomposition of −L, then

etL =

∫ +∞

0

e−λtdEλ

and for every α > 0

Rα = (α− L)−1 =

∫ +∞

0

1

α+ λ
dEλ .

In general, if −L is a positive-definite self-adjoint linear operator on H

with spectral decomposition (
eqssu01
3.4) then for any continuous function f on

[0,+∞), f(L) is a self-adjoint operator

f(L) =

∫ +∞

0

f(−λ)dEλ

with domain

D(f(L)) =

{
x ∈ H :

∫ +∞

0

f(−λ)2d⟨Eλx, x⟩ < +∞
}

.

The most important for our propose is the square root of −L which can

be defined as
√
−L =

∫ +∞

0

√
λdEλ

with domain

D(
√
−L) =

{
x ∈ H :

∫ +∞

0

λd⟨Eλx, x⟩ < +∞
}

.
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√
−L is a positive-definite, self-adjoint operator. ObviouslyD(L) ⊂ D(

√
−L)

and

⟨−Lx, y⟩ = ⟨
√
−Lx,

√
−Ly⟩ , ∀x ∈ D(L); y ∈ D(

√
−L)

Let (Pt)t≥0 be the semigroup generated by L:

Pt =

∫ +∞

0

e−λtdEλ

and set

E (t)(x, x) =
1

t
(x− Ptx, x) =

1

t

(
∥x∥2 − ∥Pt/2x∥2

)
, t > 0, x ∈ H, (3.5)

which is called an approximating form defined by (Pt). Then

E (t) =
1

t

∫ +∞

0

(
1− e−λt

)
d⟨Eλx, x⟩ .

Since

d

ds

1− e−s

s
=

e−ss− 1 + e−s

s2

= −es − 1− s

s2es
< 0 for s > 0,

t→ E (t)(x, x) is decreasing and therefore

lim
t↓0

E (t)(x, x) = sup
t>0

E (t)(x, x)

exists, which will be denoted by E (x, x) (≤ +∞).

deq004 Theorem 3.3.3 Let L be a negative-definite self-adjoint operator on Hilbert

space H, and let Pt =etL be the semigroup generated by L. Then x ∈
D(

√
−L) if and only if E (x, x) < +∞. Moreover

∥
√
−Lx∥2 = E (x, x) (3.6)
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for every x ∈ D(
√
−L). Similarly if we define an approximating form by

(Rα) as

E [β](x, y) = β(x− βRβx, y), x, y ∈ H, (3.7)

then D(
√
−L) = {x ∈ H : supβ>0 E [β](x, x) <∞} and

E (x, x) = ∥
√
−Lx∥2 = lim

β→∞
E [β](x, x) (3.8)

for every x ∈ D(
√
−L).

Proof. If x ∈ D(
√
−L) then∫ +∞

0

λd⟨Eλx, x⟩ < +∞ .

However
1− e−s

s
≤ 1 for all s ∈ (0,+∞)

so that by Lebesgue’s dominated convergence

lim
t↓0

1

2t

(
∥x∥2 − ∥Ptx∥2

)
=

∫ +∞

0

lim
t↓0

1− e−2λt

2t
d⟨Eλx, x⟩

=

∫ +∞

0

λd⟨Eλx, x⟩

= ∥
√
−Lx∥2 .

On the other hand, if

lim
t↓0

1

2t

(
∥x∥2 − ∥Ptx∥2

)
= sup

t>0

1

2t

∫ +∞

0

(
1− e−2λt

)
d⟨Eλx, x⟩

< +∞,

then by Fatou’s lemma and the fact that 1−e−2λt

2t
> 0, we have∫ +∞

0

λd⟨Eλx, x⟩ =
∫ +∞

0

lim
t↓0

1− e−2λt

2t
d⟨Eλx, x⟩
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≤ lim
t↓0

∫ +∞

0

1− e−2λt

2t
d⟨Eλx, x⟩ < +∞

that is x ∈ D(
√
−L).

lowe004 Corollary 3.3.4 Let L be a negative-definite self-adjoint operator L on

Hilbert space H, and let Pt =etL. Then E is lower semi-continuous on H,

that is

E (x, x) ≤ limn→∞E (xn, xn)

if xn → x in H.

The lower semi-continuity follows from that E is the supremum of a family

of continuous functions

E (x, x) ≡ sup
t>0

1

2t

(
∥x∥2 − ∥Ptx∥2

)
.

Definition 3.3.5 The quadratic form (E , D(E )) associated with a negative-

definite self-adjoint operator L is defined by

E (x, y) = ⟨
√
−Lx,

√
−Ly⟩ , x, y ∈ D(E )

where

D(E ) = D(
√
−L) .

The main advantage by considering the quadratic form (E , D(E )) instead

of the (unbounded) self-adjoint operator L is that, as we have seen, E (x, x)

is well-defined for every x ∈ H

E (x, x) = lim
t↓0

1

2t

(
∥x∥2 − ∥Ptx∥2

)
and E (x, x) is finite if and only if x ∈ D(E ). The following proposition is

evident since
√
−L is a closed operator.
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propgh01 Proposition 3.3.6 Let L be a negative-definite self-adjoint operator on

Hilbert space H, and let (E , D(E )) be the quadratic form associated with L.

Define for x ∈ D(E ), α > 0,

Eα(x, x) = α∥x∥2 + E (x, x)

= α∥x∥2 + ∥
√
−Lx∥2.

Then D(E ) is a Hilbert space with respect to Eα.

We now define the concept of symmetric forms on a Hilbert space and

prove that a symmetric form corresponds to a strongly continuous contraction

resolvent, or equivalently a strongly continuous contraction semigroup and a

non-positive definite self-adjoint operator.

Definition 3.3.7 A densely defined bilinear form (E , D(E )) on H is called

a symmetric form on H if it is symmetric, non-negative definite and D(E ) is

a Hilbert space with respect to the inner product Eα.

Theorem 3.3.8 If (E , D(E )) is a symmetric form on H, then there exists

a unique strongly continuous symmetric contraction resolvent (Rα, α > 0)

such that

Eα(Rαx, y) = ⟨x, y⟩, α > 0, x ∈ H, y ∈ D(E ). (3.9)

Proof. Fix x ∈ H and α > 0. Then y 7→ ⟨x, y⟩ is a bounded linear operator

on Hilbert space (D(E ),Eα) since

|⟨x, y⟩| ≤ ∥x∥∥y∥ ≤ 1√
α
∥x∥ · ∥y∥Eα ,

where ∥ · ∥Eα =
√

Eα(·, ·). By Riesz representation theorem, there exists a

unique element in D(E ), denoted by Rαx, such that

Eα(Rαx, y) = ⟨x, y⟩, y ∈ D(E ). (3.10)
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Clearly it follows that

α||Rαx||2 ≤ Eα(Rαx,Rαx) = ⟨x,Rαx⟩ ≤ ||x||||Rαx||

and hence we have ||αRαx|| ≤ ||x||, i.e., αRα is a contraction. Moreover

(Rα, α > 0) is a strongly continuous symmetric contraction resovent on H.

In fact, taking α > β > 0 and x, y ∈ H,

Eα(Rαx, y) = (x, y) = Eβ(Rβx, y)

= Eα(Rβx, y) + (β − α)⟨Rβx, y⟩

= Eα(Rβx+ (β − α)RαRβx, y)

and it implies the resolvent equation

Rα −Rβ + (α− β)RαRβ = 0. (3.11)

To verify the strong continuity, we prove the following inequality first. For

x ∈ D(E ),

α||αRαx− x||2 ≤ Eα(αRαx− x, αRαx− x)

= α(x, αRαx− x) + E (x, x) ≤ E (x, x),

since, by contraction property, ⟨x, αRαx⟩ ≤ ⟨x, x⟩. This implies αRαx → x

as α→ ∞ for x ∈ D(E ) and hence for x ∈ H due to denseness.

3.4 Markovian property and Dirichlet forms

In the previous section, we have proven that in any abstract Hilbert space,

there is essentially a one-to-one correspondence among strongly continu-

ous contraction semigroups, strongly continuous contraction resolvents, non-

positive definite self-adjoint operators and symmetric forms. However what
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we are really interested is a symmetric form on L2 space with Markovian

property, which we call a Dirichlet form.

Let (E,E ) be a measurable space with a σ-finite measure m, and for

p ≥ 1

Lp(E;m) = {f ∈ E :

∫
E

|f |pdm <∞}

with so-called Lp-norm

||f ||Lp =

(∫
E

|f |pdm
) 1

p

.

Of course two functions are equal if they are equal m-a.e. Let (E , D(E )) be a

symmetric form on L2(E;m) with strongly continuous symmetric contraction

semigroup (Pt), strongly continuous symmetric contraction resolvent (Rα)

and infinitesimal generator (L,D(L)). Usually we use F instead of D(E )

in this case. For two measurable functions u, v on E, v is called a normal

contraction of u if, for some version of u, v,

|u(x)| ≤ |v(x)|, ∀x ∈ E;

|u(x)− u(y)| ≤ |v(x)− v(y)|, ∀x, y ∈ E.

Definition 3.4.1 A symmetric form (E ,F ) is called Markovian if any

normal contraction operates on E , more precisely, if u ∈ F and v is a

normal contraction of u, then v ∈ F and E (v, v) ≤ E (u, u). A Markovian

symmetric form on L2(E;m) is called a Dirichlet form on L2(E;m).

For convenience, write ∥u∥E =
√

E (u, u) for u ∈ F , which is a semi-

norm.

Theorem 3.4.2 A Dirichlet form E on L2(E;m) possesses the following

properties:

(a) if u ∈ F , then |u| ∈ F and E (|u|, |u|) ≤ E (u, u).
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(b) if u, v ∈ F , then u ∧ v, u ∨ v, u ∧ 1 ∈ F .

(c) if u, v ∈ F ∩ L∞(E;m), then uv ∈ F and√
E (uv, uv) ≤ ||u||∞

√
E (v, v) + ||v||

√
E (u, u).

(d) if u ∈ F and un = ((−n)∨u)∧n, then un ∈ F and un → u in E1-norm.

(e) if u ∈ F and u(ε) = u − ((−ε) ∨ u) ∧ ε for ε > 0, then u(ε) ∈ F and

u(ε) → u in E1-norm as ε ↓ 0.

Proof. (a), then (b), is obvious since | · | is a normal contraction. For (c),

since ||u||∞v + ||v||∞u is a normal contraction of uv, it follows that uv ∈ F

and ∥uv∥E ≤ ∥||u||∞v + ||v||∞u∥E . Then by the triangle inequality, (c) holds.

(d) Clearly un is a normal contraction of u and hence E1(un, un) ≤
E1(u, u).Then for any v ∈ L2(E;m),

E1(un, R1v) = (un, v) → (u, v) = E1(u,R1v).

Since

E (βRβx− x, βRβx− x) = E (x, x)− β(x, x− βRβx),

it follows from Theorem
deq004
3.3.3 that R1(L

2(E;m)) is dense in F with respect

to the norm E1. Therefore E1(un, v) → E1(u, v) for any v ∈ F and E1(un −
u, un − u) ≤ 2E1(u, u)− 2E1(un, u) → 0. The proof of (e) is similar.

Exercise 3.1 Assume that un, u ∈ F , un → u with respect to E1-norm

and ϕ is a real function such that ϕ(0) = 0, |ϕ(t) − ϕ(s)| ≤ |t − s| for any

t, s ∈ R. Prove that ϕ(un), ϕ(u) ∈ F and ϕ(un) → ϕ(u) weakly with respect

to E1-norm. If, in addition, ϕ(u) = u, then the convergence is in norm.
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Abounded linear operator S on L2(E;m) is called Markovian if 0 ≤
Su ≤ 1 a.e. whenever u ∈ L2(E;m), 0 ≤ u ≤ 1 a.e. This implies S is

positive, i.e., Su ≥ 0 a.e. for u ≥ 0 a.e. The semigroup (Pt) is Markovian

if Pt is Markovian for every t > 0 and the resolvent (Rα) is Markovian if

αRα is Markovian for every α > 0. It is evident that the semigroup (Pt) is

Markovian if and only if its resolvent (Rα) is Markovian.

t:0430-5 Theorem 3.4.3 E is Markovian if and only if its resolvent (Rα) is Marko-

vian.

Proof. Let’s prove necessity first. Fix α > 0 and u ∈ L2(E;m) such that

0 ≤ u ≤ 1 a.e. Define a quadratic form ψ on F by

ψ(v) = E (v, v) + α⟨v − u/α, v − u/α⟩, v ∈ F . (3.12)

Since Eα(Rαu, v) = ⟨u, v⟩,

ψ(v) = ψ(Rαu) + Eα(Rαu− v,Rαu− v). (3.13)

Then Rαu is the unique element in F minimizing ψ. Let

w =
1

α
· (0 ∨ αRαu) ∧ 1 = (0 ∨Rαu) ∧

1

α
.

Then w is a normal contraction of Rαu and it follows that w ∈ F and

E (w,w) ≤ E (Rαu,Rαu). On the other hand, since 0 ≤ u ≤ 1 a.e., we have

|w − u/α| ≤ |Rαu− u/α| and easily

||w − u/α||L2 ≤ ||Rαu− u/α||L2 .

Combining these, we have ψ(w) ≤ ψ(Rαu). By the uniqueness, w = Rαu or

0 ∨ αRαu ∧ 1 = αRαu, which implies 0 ≤ αRαu ≤ 1 a.e. This proves that

(Rα) is Markovian.
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The sufficiency is more difficult. The proof below is cited from [?]. As-

sume that (αRα) is Markovian. For any u ∈ F , let v is a normal contraction

of u. We need to show that v ∈ F and E (v, v) ≤ E (u, u). Indeed, by the

approximating form, it suffices to prove that for any β > 0,

⟨v, v − βRβv⟩ ≤ ⟨u, u− βRβu⟩. (3.14) e:0430-1

Since the simple functions are dense in L2(E;m) we may assume that

u =
n∑

i=1

ai1Ai
,

with {Ai} disjoint and m(Ai) < ∞. Since v is a normal contraction, v is

constant on every Ai, i.e., there exist {bi} such that v =
∑n

i=1 bi1Ai
and

(
e:0430-1
3.14) is equivalent to∑

i,j

bibj⟨1Ai
− βRβ1Ai

, 1Aj
⟩ ≤

∑
i,j

aiaj⟨1Ai
− βRβ1Ai

, 1Aj
⟩. (3.15) e:0430-2

Using identity xy = 1
2
((x+ y)2 − x2 − y2) for real x, y ∈ R, we get∑

i,j

bibj⟨1Ai
− βRβ1Ai

, 1Aj
⟩

=
∑
i,j

bibj⟨1Ai
, 1Aj

⟩ −
∑
i,j

bibj⟨βRβ1Ai
, 1Aj

, 1Aj
⟩

=
∑
i

b2i ⟨1− βRβ1, 1Ai
⟩+ 1

2

∑
i,j

(bi − bj)
2⟨βRβ1Ai

, 1Aj
⟩.

The normal contraction property implies that

|bi| ≤ |ai|, |bi − bj| ≤ |ai − aj|, i, j = 1, · · · , n.

Then (
e:0430-2
3.15) follows immediately from the Markovian property: βRβ1 ≤ 1

and βRβ1Ai
≥ 0.
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In particular, u+ ∧ 1 is a normal contraction of u and is called a unit

contraction. The first half in the proof of Theorem
t:0430-5
3.4.3 proves that if every

unit contraction operates on E , then (αRα) is Markovian and hence every

normal contraction operates on E .

3.5 Capacity

In this section when we talk about an equality or inequality concerning func-

tions in L2(E;m) without referring to any measure we mans m-almost ev-

erywhere.

For an open subset A of E, if LA = {u ∈ F : u ≥ 1 on A} is non-empty,

we say A has finite capacity and define the capacity of A as

C(A) = inf{E1(u, u) : u ∈ LA}. (3.16)

Since LA is a closed convex subset in a Hilber space (F ,E1), there exists a

unique element in LA, denoted by eA and called the equilibrium potential of

A, such that C(A) = E1(eA, eA). Since e+A ∧ 1 ∈ LA is a normal contraction

of eA, E1(e
+
A ∧ 1, e+A ∧ 1) ≤ E1(eA, eA) and hence e+A ∧ 1 = eA by uniqueness.

It follows that 0 ≤ eA ≤ 1 and eA = 1 on A.

l:0503-1 Lemma 3.5.1 eA = 1 on A and for any u ∈ F with u ≥ 0 on A, E1(u, eA) ≥
0. Actually eA is the unique element in LA satisfying the property above.

Proof. For such u, λu+ eA ∈ LA for any λ ≥ 0. Then

E1(eA, eA) ≤ E1(λu+ eA, λu+ eA)

= λ2E1(u, u) + 2λE1(u, eA) + E1(eA, eA)

and it follows that E1(u, eA) ≥ 0. Conversely if v ∈ LA satisfies v = 1 on A

and E1(v, u) ≥ 0 for each u ∈ F with u ≥ 0 on A, then for any w ∈ LA,
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w − v ≥ 0 on A, and hence

E1(w,w) = E1(w − v + v, w − v + v) ≥ E1(v, v)

namely v minimizes E1 in LA and it implies that v = eA.

It is seen from this lemma that E1(u, eA) = 0 if u = 0 on A or E1(u, eA) =

C(A) if u = 1 on A.

l:0503-2 Lemma 3.5.2 Assume that A,B are open and A ⊂ B. Then C(A) ≤ C(B)

and eA ≤ eB.

Proof. The first claim is obvious. For the second claim, it suffices to prove

that (eB − eA)
+ + eA = eB. Denote the left side by u. Then u ∈ LB, and,

using Markovian property and Lemma
l:0503-1
3.5.1, we have

E1(u, u) = E1((eB − eA)
+, (eB − eA)

+) + 2E1(eA, (eB − eA)
+) + E1(eA, eA)

≤ E1(eB − eA, eB − eA) + E1(eA, eA)

= E1(eB, eB)− 2E1(eB − eA, eA) = E1(eB, eB).

It implies that u = eB.

p:0504-1 Proposition 3.5.3 The capacity of open sets has the following properties

which make it a Choquet capacity on E.

(1) For open A ⊂ B, C(A) ≤ C(B);

(2) For open An ↑ A, C(An) ↑ C(A);

(3) For open A,B, C(A ∪B) + C(A ∩B) ≤ C(A) + C(B).

Proof. (1) has been shown. (2) It suffices to show that limn E1(eAn , eAn) ≥
C(A), where the sequence on the left is increasing. Since E1(eAn , eAn) ≤
E1(eA, eA), by Banach-alaoglu Theorem, there exists a subsequence of eAn ,

say itself, such that its Cesaro mean 1
n

∑
k=1 eAk

converges to some u ∈ F in
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E1-norm and also almost surely. Due to the fact that eAn is increasing, u ≥ 1

on A and hence

||eA||E1
≤ ||u||E1

= lim

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
k=1

eAk

∣∣∣∣∣
∣∣∣∣∣
E1

≤ lim
n

1

n

n∑
k=1

||eAk
||E1

= lim
n

||eAn||E1
,

where ||u||E1
=
√

E1(u, u), the E1-norm on F .

(3) We prove

eA + eB − eA∪B − eA∩B ≥ 0 (3.17) e:0503-1

on A ∪ B. Indeed, since eB ≥ eA∩B by Lemma
l:0503-2
3.5.2 and eA = eA∪B on A,

(
e:0503-1
3.17) is true on A. Similarly (

e:0503-1
3.17) is true on B.

Now by Lemma
l:0503-1
3.5.1, E1(eA + eB − eA∪B − eA∩B, eA∪B) ≥ 0 and the

conclusion follows from the remark below Lemma
l:0503-1
3.5.1.

Now for any subset A ⊂ E, define the capacity of A by

C(A) = inf{C(B) : B open and A ⊂ B}. (3.18)

When A is open, this definition is consistent with that above. Clearly a set

A is capacity zero if and only if there exist open subsets Bn ↓ such that

A ⊂
∩

nBn and C(Bn) ↓ 0.

Theorem 3.5.4 The capacity on all subsets defined above satisfies (1)-(3)

in Proposition
p:0504-1
3.5.3.

Proof. (1) is obvious. (2) Let An ↑ A. It suffices to show that limnC(An) ≥
C(A). Take open Bn such that Bn ⊃ An and C(Bn) − C(An) < ε/2n. Set
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Gn = B1 ∪ · · · ∪Bn. We may verify by induction that

C(Gn)− C(An) <
n∑

k=1

ε/2k < ε.

Since
∪
Gn ⊃ A,

lim
n

C(An) + ε ≥ lim
n

C(Gn) = C(
∪
n

Gn) ≥ C(A).

By the arbitrariness of ε, we have the conclusion. The proof of (3) is easy

and left as an exercise.

Exercise 3.2 If B is Borel subset of E and C(B) = 0, then m(B) = 0.

3.6 Regularity and quasi-continuous version

Definition 3.6.1 A function u on E is called quasi-continuous if for any

ε > 0, there exists a closed set F such that C(F c) < ε and u is continuous

on F . A sequence {Fn} of closed sets increasing to E is called a nest on E

if C(E \Fn) ↓ 0. A nest {Fn} is m-regular if supp(1Fn ·m) = Fn for each n.

Clearly u is quasi-continuous if and only if there exists a nest {Fn} such

that u is continuous on each Fn. We now assume that the Dirichlet form

(E ,F ) on L2(E;m) is regular in the sense of Fukushima, i.e., E is locally

compact with countable base, C∞∩F is dense both in C∞ under the uniform

norm and in F under E1-norm.

Exercise 3.3 If (E ,F ) is regular, then m must be a Radon measure.

Proof. Let K be a compact subset of E. Take a relatively compact open

set G ⊃ K. There exists a continuous function u ≥ 0 such that u = 1

on K and u = 0 on Gc. Then u ∈ C∞(E) and by regularity there exists
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v ∈ C∞ ∩ F , such that ||u− v||∞ < 1
2
. It is clear that v ≥ 1

2
on K. Using

Markovian property of E , v+ ∧ 1 ∈ F and it is no less than 1
2
on K also.

Hence ∞ > ⟨v+ ∧ 1, v+ ∧ 1⟩ ≥ 1
4
m(K), i.e., m(K) <∞.

Exercise 3.4 For a given nest {Fn} on E, let F ′
n = supp(1Fn · m). Then

{F ′
n} is an m-regular nest.

Exercise 3.5 If u is quasi-continuous, then u ≥ 0 a.e. implies that u ≥ 0

except on a capacity zero set.

l:capineq Lemma 3.6.2 For u ∈ C∞ ∩ F and λ > 0,

C({|u| ≥ λ}) ≤ 1

λ2
E1(u, u). (3.19) e:0504-1

Proof. Since λ−1u ≥ 1 on {|u| ≥ λ} which is open, (
e:0504-1
3.19) is immediate.

Theorem 3.6.3 If (E ,F ) is a regular Dirichlet form on L2(E;m), then each

element u ∈ F has a quasi-continuous version.

Proof. Take un ∈ C∞(E) ∩ F such that ||u− un||E1
→ 0. Then there exists

a subsequence of {un}, say itself, such that

||un+1 − un||E1
≤ 1

2n
.

By Lemma
l:capineq
3.6.2,

C

({
|un+1 − un| ≥

1

n2

})
≤ n4

22n
.

Then by the countable subadditivity, we have

C

(∪
n≥k

{|un+1 − un| ≥ n−2}

)
≤
∑
n≥k

n4

22n
.

Set

Fk =

(∪
n≥k

{|un+1 − un| ≥ n−2}

)c

=
∩
n≥k

{|un+1 − un| < n−2}
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for k ≥ 1. Then limk C(F
c
k ) = 0 and |un+1(x) − un(x)| < n−2 holds for all

x ∈ Fk and n ≥ k. Hence un converges to some function v uniformly on F .

It follows that un → v pointwisely on
∪

n Fn. On the other hands, un → u

a.e. m on E. This means u = v a.e. m on
∪

n Fn. However the complement

of
∪

n Fn has capacity zero and hence has measure zero. It implies that u = v

a.e. on E and v is clearly quasi-continuous.



Chapter 4

Symmetric Markov processes

4.1 Symmetric Borel right processes

Let X be a Borel right process on E with transition semigroup (Pt).

Definition 4.1.1 Let m be a σ-finite measure on (E,E ). The process X

is called symmetric with respect to m if for any non-negative measurable

functions f, g and t ≥ 0,∫
g(x)Ptf(x)m(dx) =

∫
f(x)Ptg(x)m(dx).

If we write the inner product of f, g ∈ L2(E;m) as ⟨f, g⟩, this means

⟨Ptf, g⟩ = ⟨f, Ptg⟩.

It follows that m ∈ Exc.

Lemma 4.1.2 If ξ ∈ Exc and p ≥ 1, then (Pt) may be extended to a

contraction semigroup on Lp(E; ξ).

Proof. For f, g ∈ E with f = g ξ-a.e., since ξ|Ptf − Ptg| ≤ ξPt|f − g| ≤
ξ|f − g| = 0, Ptf = Pg ξ-a.e. Hence for any f ∈ Lp(E; ξ) with p ≥ 1, Ptf

76
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does not depend on any particular version of f . By Hölder’s inequality

|Ptf(x)| =
∣∣∣∣∫

E

Pt(x, dy)f(y)

∣∣∣∣
≤
∫
E

Pt(x, dy)|f(y)| ≤
(∫

E

Pt(x, dy)|f(y)|p
)1/p

.

Hence we have

||Ptf ||pLp =

∫
E

|Ptf(x)|pξ(dx) ≤
∫
E

Pt(|f |p)(x)ξ(dx) = ξPt(|f |p) ≤ ||f ||pLp ,

i.e., (Pt) is also a contraction semigroup on Lp(E; ξ).

Theorem 4.1.3 (Pt) is a strongly continuous contraction semigroup on

L2(E;m).

Proof. Take α > 0 and set

D = {Uαf : f ∈ bE ∩ L1(E;m)} ⊂ L2(E;m).

Then D is dense in L2(m). Indeed, it suffices to show that if g ∈ L2(E;m)

and ⟨g, Uαf⟩ = 0 for all f ∈ bE ∩L1(E;m), then g = 0 a.e. By the resolvent

equation, it follows that ⟨g, Uβf⟩ = 0 for all β > 0. Choose h = U1k where

k ∈ bE ∩ L1(E;m) and strictly positive. Then for any bounded f ∈ C(E),

t 7→ f(Xt)h(Xt) is right continuous and hence βUβ+1(fh) −→ fh a.e. as

β → ∞. However ⟨g, βUβ+1(fh)⟩ = 0. Since h is 1-excessive,

β|g · Uβ+1(fh)| ≤ β|g|Uβ+1|fh| ≤ ||f ||∞|g|βUβ+1h ≤ ||f ||∞|g|h.

It follows from the dominated convergence theorem that

⟨g, f⟩h·m = ⟨g, fh⟩ = lim
β→∞

⟨g, βUβ+1(fh)⟩ = 0.

Since h ·m is a finite measure, C(E) is dense in L2(E;h ·m) and then g = 0

a.e. m.
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We now prove the strong continuity. Fix α > 0.Let u = Uαf ∈ D. Then

u(x) =

∫ t

0

e−αsPsf(x)ds+ e−αtPtu(x)

and, as t ↓ 0,

||Ptu− u||L2 ≤
∣∣∣∣e−αtPtu− u

∣∣∣∣
L2

≤ (1− e−αt)||u||L2 + t||f ||L2 → 0.

For any u ∈ L2(E;m), take un ∈ D such that un → u in L2. Then

||Ptu− u||L2 ≤ ||Ptu− Ptun||L2 + ||Ptun − un||L2 + ||un − u||L2

≤ 2||un − u||L2 + ||Ptun − un||L2 .

It follows that (Pt) is strongly continuous.

Let (L,D(L)) be the infinitesimal generator of strongly continuous con-

traction semigroup (Pt) on L2(E;m). By Theorem
deq004
3.3.3, the bilinear form

(E ,F ) defined by

E (f, g) = (
√
−Lf,

√
−Lg), F = D(

√
−L), (4.1)

is a symmetric form on L2(E;m) and it may be represented by its approxi-

mating form
E (f, g) = lim

t↓0

1

t
⟨f − Ptf, g⟩,

F =

{
f ∈ L2(E;m) : sup

t

1

t
⟨f − Ptf, f⟩ <∞

}
.

(4.2)

Recall that we usually write

E (t)(f, g) =
1

t
⟨f − Ptf, g⟩, E [β](f, g) = β⟨f − βUβf, g⟩.
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Theorem 4.1.4 (E ,F ) is a Dirichlet form on L2(E;m).

Proof. Though this theorem is actually a consequence of Theorem
t:0430-5
3.4.3, we

would like to give a direct proof here. It suffices to prove that (E ,F ) is

Markovian. By symmetry, m(dx)Pt(x, dy) is symmetric and then for f ∈ E ∗,

E (t)(f, f) =
1

t
⟨f, f − Ptf⟩

=
1

t

∫
E

f(x) (f(x)− (Ptf) (x))m(dx)

=
1

t

∫
E

f(x)

(
f(x)−

∫
M

f(y)Pt(x, dy)

)
m(dx)

=
1

t

∫
E

u(x)

(∫
E

(u(x)− u(y))Pt(x, dy)

)
m(dx) +

1

t

∫
E

f 2 (1− Pt1) dm

=
1

t

∫
E×E

f(x) (f(x)− f(y))Pt(x, dy)m(dx) +
1

t

∫
E

f 2 (1− Pt1) dm

=
1

2t

∫
E×E

(f(x)− f(y))2 Pt(x, dy)m(dx) +
1

t

∫
E

f2 (1− Pt1) dm

If g is a normal contraction of f , it is then obvious that

E (t)(g, g) ≤ E (t)(f, f)

and hence f ∈ F implies that g ∈ F and E (g, g) ≤ E (f, f).

4.2 Irreducibility and uniqueness of symmetriz-

ing measure

When the process X is symmetric with respect to m, m is called a sym-

metrizing measure of X. The existence and uniqueness of symmetrizing

measures ofX are always interesting to explore. In this section we shall intro-

duce the notion of fine irreducibility and prove that it implies the uniqueness.
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The process X is called finely irreducible if Px(TD < ∞) > 0 for any x ∈ E

and a non-empty finely open subset D, where TD is the hitting time of D.

Intuitively the fine irreducibility means that any point can reach any non-

empty finely open set, while the usual irreducibility means that any point can

reach any non-empty open set. Certainly the fine irreducibility is stronger

than the usual irreducibility. Since the fine irreducibility is hard to be char-

acterized, we shall give a few equivalent statements which may be useful in

some circumstances.

l:0430-1 Lemma 4.2.1 The following statements are equivalent.

(1) X is finely irreducible.

(2) Uα1D is positive everywhere on E for any non-empty finely open set D.

(3) Uα1A is either identically zero or positive everywhere on E for any Borel

set A or, in other words, {Uα(x, ·) : x ∈ E} are all mutually absolutely

continuous.

(4) All non-trivial excessive measures are mutually absolutely continuous.

Proof. The equivalence of (1) and (2) is easy. We shall prove that they are

equivalent to (3). We may assume α = 0. Suppose (1) is true. If U1A is not

identically zero, then there exists δ > 0 such that D := {U1A > δ} is non-

empty. Since U1A is excessive and thus finely continuous, D is finely open

and the fine closure of D is contained in {U1A ≥ δ}. Then by Lemma
l:0430-2
1.3.7,

U1A(x) ≥ PDU1A(x) = Ex (U1A(XTD
)) ≥ δPx(TD <∞) > 0.

Conversely suppose (3) is true. Then for any finely open set D, by the right

continuity of X, U1D(x) > 0 for any x ∈ D. Therefore U1D is positive

everywhere on E.

Let ξ be an excessive measure. Since αξUα ≤ ξ, ξ(A) = 0 implies that

ξUα(A) = 0. However ξ is non-trivial. Thus it follows from (3) that Uα1A ≡



CHAPTER 4. SYMMETRIC MARKOV PROCESSES 81

0, i.e., A is potential zero. Conversely if A is potential zero, then ξ(A) = 0

for any excessive measure ξ. Therefore (3) implies (4).

Assume (4) holds. Since U(x, ·) is excessive for all x and hence they are

equivalent. This implies (3).

t:0430-1 Theorem 4.2.2 Assume that X is finely irreducible. Then the symmetriz-

ing measure of X is unique up to a constant. More precisely if both µ and

ν are non-trivial symmetrizing measures of X, then ν = cµ with a positive

constant c.

Proof. First of all there exists a measurable set H such that both µ(H) and

ν(H) are positive and finite, because µ and ν are equivalent by Lemma
l:0430-1
4.2.1.

This is actually true when both measures are σ-finite and one is absolutely

continuous with respect to another. Indeed, assume that ν ≪ µ. Since

ν is non-trivial and σ-finite, we may find a measurable set B such that

0 < ν(B) < ∞. Then µ(B) > 0. Since µ is σ-finite, there exist An ↑ E such

that 0 < µ(An) <∞. Then ν(An ∩B) ↑ ν(B) and µ(An ∩B) ↑ µ(B). Hence

there exists some n such that ν(An∩B) > 0. Take H = An∩B, which makes

both µ(H) and ν(H) positive and finite.

Set c = ν(H)/µ(H). We may assume that c = 1 without loss of generality.

Let m = µ+ ν. Then there is f1, f2 ≥ 0 such µ = f1 ·m and ν = f2 ·m. Let

A = {f1 > f2}, B = {f1 = f2} and C = {f1 < f2}.
We shall show that ν = µ. Otherwise µ(A) > 0 or ν(C) > 0. We

assume that µ(A) > 0 without loss of generality. Since µ is σ-finite, there is

An ∈ B(E) such that An ⊆ A, µ(An) < ∞ and An ↑ A. Let D = B ∪ C.

For any integer n and α > 0,

(Uα1An , 1D)µ ≤ (Uα1An , 1D)ν = (Uα1D, 1An)ν ≤ (Uα1D, 1An)µ.
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Since (Uα1An , 1D)µ = (Uα1D, 1An)µ, it follows that (U
α1D, 1An)ν = (Uα1D, 1An)µ.

Thus we have

(Uα1D, (1−
f2
f1
)1An)µ = (Uα1D, 1An)µ − (Uα1D, 1An)ν = 0.

Since 1− f2
f1
> 0 on A, let n go to infinity and by the monotone convergence

theorem we get that (Uα1D, 1A)µ = 0. The fine irreducibility of X implies

that Uα1D = 0 identically or D is of potential zero. Therefore

µ(D) = ν(D) = 0.

Consequently,

0 = µ(H)− ν(H) =

∫
H∩A

(1− f2
f1
)dµ

which leads to that µ(H ∩ A) = 0 and also µ(H) = 0. The contradiction

implies that ν = µ.

The following example shows that the usual irreducibility is not enough

to guarantee the uniqueness of symmetrizing measure, while the fine irre-

ducibility might be too strong.

Example 4.2.3 Let

J =
1

4
(δ1 + δ−1 + δ√2 + δ−

√
2)

defined on R and π = {πt}t>0 the corresponding convolution semigroup; i.e.,

π̂t(x) = e−tϕ(x) with

ϕ(x) =

∫
(1− cosxy)J(dy) =

1

2
(1− cos x) +

1

2
(1− cos

√
2x).

Let X be the corresponding Lévy process. Then X is symmetric with respect

to the Lebesgue measure. Let N = {n + m
√
2 : n,m are integers} and

µ =
∑

x∈N δx. Then µ is σ-finite and also a symmetrizing measure. It is easy
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to see that any point x can reach any point in x+N and can not reach outside

of x + N . Since x + N is dense in R, any point can reach any non-empty

open set, namely X is irreducible. However any compound Poisson process

will stay at the starting point for a positive period of time, i.e., any singleton

is finely open. Hence X is not finely irreducible.

Another interesting example is also a compound Poisson processX, where

the Lévy measure J is a probability measure on R with a continuous even

density. In this case, we can show thatX has a unique symmetrizing measure,

the Lebesgue measure, but X is still irreducible, while not finely irreducible.

Actually any single point can not reach any other point.

It is known that the fine topology is determined by the process and hard

to identify usually. Hence it is hard to verify sometimes the fine irreducibility

defined in the theorem.

Definition 4.2.4 We say X is LSC or strong Feller, if Uα1B is lower-

semi-continuous or continuous, respectively, for any Borel subset B of E.

Lemma 4.2.5 If X is LSC or strong Feller, the fine irreducibility is equiva-

lent to the usual one.

Proof. It suffices to prove that Px(TD < ∞) > 0 for any x ∈ E and non-

empty open subset D ⊂ E. In fact, take A ∈ B(E) with Uα1A ̸= 0 identi-

cally. There is b > 0 such that G = {Uα1A > b} ̸= ∅ and is open due to the

property LSC. Again by Lemma
l:0430-2
1.3.7, for any x ∈ E,

U1A(x) ≥ PGU1A(x) = Px (U1A(XTG
), TG <∞) .

But XTG
∈ Ḡ on {TG < ∞} by Theorem

t:100428-3
1.3.5 and then XTG

≥ b on {TG <

∞}. Hence by the irreducibility, we have

U1A(x) ≥ bPx (TG <∞) > 0.
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Question If X is a Lévy process, what conditions imposed on its Lévy

exponent guarantee that X is irreducible or finely irreducible?

4.3 Restriction


