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ABSTRACT
CAD models are multimodal data where information and knowl-
edge contained in construction sequences and shapes are comple-
mentary to each other and representation learning methods should
consider both of them. Such traits have been neglected in previous
methods learning unimodal representations. To leverage the infor-
mation from both modalities, we develop a multimodal contrastive
learning strategy where features from different modalities interact
via contrastive learning paradigm, driven by a novel multimodal
contrastive loss. Two pretext tasks on both geometry and sequence
domains are designed along with a two-stage training strategy to
make the representation focus on encoding geometric details and
decoding representations into construction sequences, thus being
more applicable to downstream tasks such as multimodal retrieval
and CAD sequence reconstruction. Experimental results show that
the performance of our multimodal representation learning scheme
has surpassed the baselines and unimodal methods significantly.
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Figure 1: CAD models and their corresponding parametric
construction sequences do not have one to one correspon-
dence. (a) Different CAD sequences may correspond to the
same shape. (b) Very similar CAD sequences may correspond
to very different shapes.

1 INTRODUCTION
Computer-Aided Design (CAD) models encompass a broad spec-
trum of applications in industry scenarios. They contain a compact
and editable representation of 3D products in various expression
methods such as construction sequences and rendered 3D shapes
[3]. The construction sequence contains a compact understand-
ing of the object from human designers while the 3D shape offers
a macro understanding of the object geometry. Learning models
dealing with such complex data is required to link the represen-
tations across both modalities, which also serve as a foundation
for downstream applications such as shape classification, CAD
model retrieval as well as CAD model generation [29, 30]. Tradi-
tionally, CAD representation learning adopts methods in computer
vision domains, which regard the rendered shape as 3D geometry
and adopts supervised learning methods on manually annotated
datasets such as ModelNet and ShapeNet [4, 51]. However, such
methods not only neglect information such as shape details and
how human designers construct the CAD model, but are also lim-
ited on annotated datasets that are too small and too expensive to
obtain compared with those without annotations [22, 35, 43, 51].

Recently, representations of parametric CAD construction se-
quences have been explored by a few researches [13, 50, 53] via
language modelling methods [46]. Modelling CAD sequence rep-
resentation has the following advantages. First, representations of
CAD construction sequences not only encode shape details, but also
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include knowledge of the components as well as the relationship
between them. Second, prevailing language model is a reasonable
choice for CAD sequence generation [37, 38, 46]. Because CAD
operation sequences can be regarded as written in a structured
language. The generated CAD sequences can then be rendered into
CAD shapes by using various geometry kernels and toolboxes [9].

Despite the success of CAD representation learning in either vi-
sual [1, 35, 43] or sequence domains [13, 23, 48, 50], we believe that
CAD models are actually multimodal data and different modalities
are complementary to each other. Building a comprehensive repre-
sentation on both construction sequence and geometry can boost
the performance in downstream tasks but it is challenging to do so,
due to the huge domain gap between the sequence representation
and pointcloud representation. Moreover, the two modalities have
no one-to-one correspondence. As Figure 1 shows, a CAD shape
may correspond to various different CAD sequences while a slight
modification to a CAD sequence may result in a huge change in
CAD geometry. Such observation is key feature of the CAD models,
which also forms the basis of our model design.

For representing CAD models, multimodal representation meth-
ods that can be referred to focused on multimodal understanding
and visual generation [24, 25, 31, 34, 42]. CLIP [42] has shown re-
markable performance on image understanding. BLIP series [24, 25]
generate free-form caption texts from images. In 3D vision domain,
[31, 34] have tried to generate 3D models based on text via diffusion.
However, it is not feasible to directly copy the tricks to our problem
settings as constructing the representation space of previous works
requires massive data, nor can these methods generate long and
specialized text such as CAD construction sequences. To our best
knowledge, MultiCAD is the first attempt to combine knowledge of
both CAD construction sequences and geometry to acquire a multi-
modal representation. It can be used in CAD sequence generation,
3D shape classification and multimodal retrieval, forming the basis
of downstream tasks in both geometric and sequence domains.

In order to integrate information from construction sequences
and geometry, we adopt a novel two-stage training method where
information from two modalities first interact implicitly in a self-
supervised manner, then they are aligned under supervision. The
first stage is implemented via a novel multimodal contrastive learn-
ing scheme in order to bypass the discrepancy between modalities.
Meanwhile, a pretext task for CAD sequence decoding is adopted
simultaneously to make sure the representation can be decoded
into CAD construction sequences. In the second stage, the domain
discrepancy issue is solved by a specially designed geometry pretext
task where features between modalities are explicitly aligned and
the geometric feature extractor is guided to distinguish between
shape details. For data augmentation, a novel translation scheme
is proposed to synchronize rotation, scaling and translation into
corresponding CAD construction sequences, thus expanding shape
augmentation techniques to sequence domains for the first time.

We use a variety of downstream tasks to validate the performance
of our multimodal contrastive learning scheme. The experimental
result shows that the proposed method has surpassed both the base-
lines and previous unimodal methods by a large margin. Moreover,
we also show qualitatively that our learning scheme can lead to
better shape reconstruction results. To summarize, our contribution
includes:

• We point out that CAD models are multimodal data and
propose a novel framework for multimodal representation
learning, which is the first of its kind in CAD parametric
model learning.

• A two-stage training method is proposed to guide the learn-
ing process of the multimodal representation. Two pretext
tasks on both sequence and geometric domains are designed
to model the generation and transformation between modali-
ties, which is believed to be the core ability of both unimodal
and crossmodal downstream tasks.

• Amultimodal translation scheme is proposed to synchronize
the transformation between CAD shapes and construction
sequences in data augmentation.

• Experiments on a variety of downstream tasks show the
effecitveness of our proposed multimodal representation
learning scheme. A significant performance gain is witnessed
in both sequence generation and visual representation tasks.

2 RELATEDWORK
Representation learning for 3D point clouds Early learning-
based methods for 3D object focus on fully or semi-supervised
learning [7, 16, 57]. Supervised representation learning requires
large-scale, manually annotated datasets, which is extremely time-
consuming owing to the irregular structure of point clouds [35,
43]. Therefore, recent studies on point clouds have moved to self-
supervised representation learning. Yang et al.[55] propose a self-
supervised framework based on autoencoder for cuboid shape ab-
straction via mapping point clouds into compact cuboid represen-
tation. Chen et al. [6] embed 3D point clouds with local features
and fed to a point integration model to produce a set of 3D struc-
ture points under chamfer distance. Rao et al.[40] propose to learn
point cloud representation via bidirectional reasoning between local
structures and global shape without manual supervision. However,
such methods neglect information from another modality, which is
often complementary to point clouds.

Representation learning of CAD models The success of lan-
guage models have inspired researches on learning representations
of parametric CAD construction sequences [15]. DeepCAD [50] is
a transformer-based generative model of CAD sequence [17, 18, 46]
where the latent space constructed by transformer encoder-decoder
pair can be used for unconditional generation. SketchGen [33] de-
signs a language with simple syntax as the extra perception to
generate CAD sketches automatically, solving the heterogeneous
problem in graph-based CAD sketch encoding. JoinABLe [48] uses
boundary representations for weakly supervised learning without
help of additional object category labels or other manual guidance,
assembling entities to a complete model. SkexGen [53] separately
models drawing commands and parameters of sketch and extru-
sions. It succeeds in CAD sequence generation but fails to model
relationship between sketch and extrusion pairs, nor does it obtain
any shape information. However, these methods neglect geomet-
ric information, which is vital to CAD model understanding and
downstream tasks.

CAD Sequence Reconstruction Several methods have been
proposed to reconstruct CAD sequences from other modalities.
FaceFormer [47] reconstructs a 3D CAD model from a single 2D
drawing line through the face identification results. Free2CAD [23]
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Figure 2: The illustration of our Multi-Modal Contrastive Learning (MMCL) scheme. The rectangles stand for sequence
embeddings and circles stand for pointcloud embeddings. The embeddings of two CAD models in each modality will be pushed
apart because either their sequence expressions or their geometry are not similar. The embeddings will be drawn near only
when they are two positive examples of a CAD model.

regards sketch-based CADmodeling as seq2seq translation problem,
disassembling the drawn sketches and translating them into indi-
vidual CAD command. Point2Cyl [45] translates CAD pointclouds
into sketch-and-extrusion pairs by base-barrel segmentation and
implicit geometric rendering. However, it can only handle CAD
models with a few extrusions and does not output CAD sketch
commands and parameters.

Multimodal representation learning on 3D objects 3D ob-
jects often have representations in various modalities, such as point
clouds, meshes, multi-view images, text description and CAD con-
struction sequences. Liu et al. [28] adopt late fusion on point clouds
and image features via contrastive learning and transfers multi-
modal representation into an image feature extractor to estimate
3D object pose. CMCV [20] exploits correlation between views and
modalities by a lightweight late fusion method, guiding network
to obtain features of 2D images and 3D point clouds jointly with-
out manual annotation. CAT-Det [56] adopts Point Transformer
and Vision Transformer to extract point cloud and image features
and fuse them via another transformer. CrossPoint [1] maintains
alignment between 3D and 2D objects by maximizing consistency
between point cloud and 2D image in invariant space. However,
such multimodal interactions happen only at geometry domain.

Different from previous works, our goal is to build a compre-
hensive representation of CAD models from point clouds and con-
struction sequences, which are significantly different modalities
but complementary to each other. To the best of our knowledge,
this is the first work bridging the gap between parameterized CAD
sequences and 3D point clouds to build a comprehensive represen-
tation for downstream tasks, which is achieved by our proposed
multimodal contrastive learning scheme.

3 THE PROPOSED METHOD
3.1 Representation Learning of CAD models
For learning comprehensive representation of CAD models, we
argue that information from both geometry and construction se-
quences should be focused on. Point clouds are scattered, non-
uniform data while construction sequence is token-based data with
various length. The construction sequences can provide geomet-
ric representations with shape details like edges and corners, as

well as design flow of human architects. On the other hand, CAD
geometries, such as point clouds, grants construction sequences a
macro understanding of corresponding shape. As shown in Figure
1, information from another modality helps when one modality
fails to distinguish between different data.

A CADmodel𝑀 can be interpreted as point clouds, construction
sequences and so on. Each interpretation corresponds to a modality
that can be referred to when learning the representation of 𝑀 . Let
R(𝑀) denote the representation of a CAD model 𝑀 , R(𝑀) can be
regarded as the fusion F between representations from different
modalities, as shown in Equation 1

R(𝑀) = F (ℎ1 (𝑀1), ℎ2 (𝑀2), ..., ℎ𝑛 (𝑀𝑛)), (1)
where𝑀𝑖 and ℎ𝑖 (𝑀𝑖 ) represent the raw data and the embedding of
representations in modality 𝑖 . In MultiCAD, we adopt two modal-
ities, namely pointcloud and CAD construction sequences. Point
cloud features ℎ𝑝 are extracted from a pointnet++ [36] encoder
while a transformer encoder [46, 50] is employed to extract features
ℎ𝑠 from the CAD construction sequences.

A two-stage training pipeline is adopted to obtain themultimodal
representation of CAD models. In the first stage, a representation
space is built by considering both feature from its own modality
and hint from the other. For representations in each modality, two
embeddings are nearby only when their sequences and geometric
representations are both alike. In the second stage, representations
of two modalities are aligned for multimodal translation purposes.
The knowledge of generating sequence representations are granted
to pointcloud feature extractor via a supervised training method.

3.2 Multimodal Representation Learning
For CAD models, the geometric representation and sequence repre-
sentation are significantly different and have no one-to-one corre-
spondence, as is shown in Figure 1. Point clouds are unstructured
data while the construction sequences are semi-structured, token-
based data. It is difficult to put them into a unified feature extractor
or to explicitly align the two representations at the start of the train-
ing procedure. In this sense, MultiCAD separately extracts features
of the two modalities and adopts implicit crossmodal interaction via
contrastive learning [8, 10, 44, 52, 58] in the first stage of training
process. Such strategy is illustrated in Figure 2.
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Figure 3: Network details of multimodal contrastive learning and the pretext tasks. (a) The architecture of MMCL. Positive
pairs are generated via dropout of feature extractors. (b) Sequence pretext task reconstructs input sequence from sequence
representation via transformer decoder. (c) The geometry pretext task. In this task, the PointNet++ is trained from both point
cloud embeddings and the sequence embeddings. L𝑔 is used to preserve the ability to acquire geometric representations. L𝑠 is
used to fit the CAD sequence representations.

To integrate both sequential and geometric information into the
contrastive learning scheme, we propose Multi-Modal Contrastive
Loss (MMCL, 𝐿𝑀𝑀𝐶 ), which can be regarded as a multimodal ex-
tension of InfoNCE [32]. MMCL calculates the logsoftmax of the
similarities between the representation R𝑑 ′

𝑖
(𝑀) of sample 𝑖 and the

representation of its positive example R𝑑 ′′
𝑖

(𝑀) in a batch of size
𝑁𝑚 . The formal definition of MMCL is shown in Equation 2 :

L𝑀𝑀𝐶 = −𝛼 ∗ (1 − simMM (R𝑑
′
𝑖 (𝑀),R𝑑

′′
𝑖 (𝑀)))𝛾

∗ log
𝑒simMM (R𝑑′

𝑖
(𝑀 ),R𝑑′′

𝑖
(𝑀 ) )/𝜏∑𝑁𝑚

𝑗=1 𝑒
simMM (R𝑑′

𝑖
(𝑀 ),R𝑑′′

𝑗
(𝑀 ) )/𝜏

,
(2)

where 𝛼∗(1−simMM (R𝑑 ′
𝑖
(𝑀),R𝑑 ′′

𝑖
(𝑀)))𝛾 constitutes a focal factor

inspired by focal loss [27]. 𝛼 is a hyperparameter for scaling the loss
and 𝛾 is for adjusting the punishment of well-contrasted examples.
𝜏 is the temperature hyperparameter.

InMMCL, for calculatingmultimodal similarity simMM, a straight-
forward measurement scheme is proposed, as shown in Equation 3

simMM (R𝑑
′
𝑖 (𝑀),R𝑑

′′
𝑖 (𝑀)) =

(sim(ℎ𝑑
′
𝑠𝑒𝑞𝑖

, ℎ𝑑
′′
𝑠𝑒𝑞𝑖

)
1
2 ∗ sim(ℎ𝑑

′
𝑝𝑐𝑖
, ℎ𝑑

′′
𝑝𝑐𝑖

)
1
2 )𝜎 ,

(3)

where the similarity of sequence and point cloud embeddings
between two CAD models are defined as sim(ℎ𝑑 ′𝑠𝑒𝑞𝑖 , ℎ

𝑑 ′′
𝑠𝑒𝑞𝑖

) and
sim(ℎ𝑑 ′𝑝𝑐𝑖 , ℎ

𝑑 ′′
𝑝𝑐𝑖

) respectively. 𝜎 is a hyperparameter adjusting mean
and deviation of sim𝑀𝑀 . The similarity within each modality is
defined as the cosine similarity between embeddings ℎ𝑑

′
𝑖 𝑗

and ℎ𝑑
′′
𝑖 𝑗

,
as Equation 4 shows.

sim(ℎ𝑑
′
𝑖 𝑗
, ℎ𝑑

′′
𝑖 𝑗

) =
ℎ𝑑

′
𝑖 𝑗

⊤
ℎ𝑑

′′
𝑖 𝑗ℎ𝑑 ′𝑖 𝑗  · ℎ𝑑 ′′𝑖 𝑗  𝑖 ∈ {𝑝𝑐, 𝑠𝑒𝑞}. (4)

MMCL extends InfoNCE to multimodal domain by defining the
similarity calculation strategy between modalities and introducing
focal factor as a pairwise loss regulator.

For similarity calculation strategy, as the similarity between two
CAD models lies between that of the sequence representations and
shape representations, adopting the mean of the two is reasonable.
We define simMM as the geometric mean of similarities between
sequence and point cloud embeddings. This is because some CAD
models are alike in one modality and quite different in another, as

shown in Figure 1. We should pay more attention to the modality
showing less confidence.

For the focal factor design, we have the following observations.
During the training process, when the representation of different
models are alike in both modalities, simMM will become signifi-
cantly larger than models similar in one modality. This is especially
the case for a model and its positive example where 𝑠𝑖𝑚𝑀𝑀 of
positive pairs quickly grows to ∼ 1 at the beginning of the training
process. Therefore, as shown in Equation 2, we adopt the focal
factor 𝛼 ∗ (1 − simMM (R𝑑 ′

𝑖
(𝑀),R𝑑 ′′

𝑖
(𝑀)))𝛾 as a regularizer to sup-

press these cases and make MMCL focus on models similar in one
modality, namely the hard negatives.

In this sense, the embeddings of two modalites will be drawn
near only when they are alike in both sequence and point cloud
representations, as illustrated in Figure 2. Since multimodal in-
teraction happens completely at similarity calculation between
representations from different CAD models, MultiCAD bypasses
the discrepancy issues between modalities and successfully inte-
grates multimodal interaction into contrastive learning process. As
a result, the representation space aligned and uniform and serving
as a good initialization for downstream tasks in each modality.

3.3 Training method
In this section, we first introduce our two-stage training pipeline. A
sequence pretext task is trained along with multimodal contrastive
learning first, as introduced in section 3.3.2. A geometry pretext
task is trained in the second stage, details refer to section 3.3.3.

3.3.1 Training Pipeline. The training strategy of MultiCAD can
be divided into two parts. First, representations of different modal-
ities interact via Multimodal Contrastive Learning, as illustrated
in Figure 2. During this stage, the sequence pretext task is trained
simultaneously because we pay special attention to the decoding
ability of the sequence representation. The geometric pretext task
is conducted afterwards so that representation between two modal-
ities are aligned. Training details of the two stages are as follows.

In the first stage, multimodal contrastive learning and the se-
quence pretext task are conducted simultaneously. Network archi-
tecture details in this stage are shown in part (a) and part (b) of
Figure 3. The input to the network is the point cloud𝑀𝑝𝑐𝑖 and the
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construction sequence 𝑀𝑠𝑒𝑞𝑖 of a CAD model 𝑖 . Training strategy
is similar to simcse [14] where positive pairs are pointcloud embed-
dings ℎ𝑑

′
𝑝𝑐𝑖
, ℎ𝑑

′′
𝑝𝑐𝑖

and sequence embeddings ℎ𝑑
′
𝑠𝑒𝑞𝑖

, ℎ𝑑
′′
𝑠𝑒𝑞𝑖

generated by
applying different dropoutmasks {𝑑′, 𝑑′′} to the pointcloud encoder
𝑃 and sequence encoder 𝐸. L𝑀𝑀𝐶 is calculated over generated pos-
itive pairs, as shown in Equation 2. All sequence representations
ℎ𝑠𝑒𝑞 are then fed into sequence decoder 𝐷 to conduct sequence
pretext tasks. Details of sequence pretext task refer to Section 3.3.2.

The loss of the first stage is a weighted sum over L𝑀𝑀𝐶 from
multimodal contrastive learning and L𝑠𝑒𝑞 from sequence pretext
task, as is shown in Equation 5 where 𝜆 is a factor balancing the
losses.

L𝐶𝐴𝐷 = L𝑀𝑀𝐶 + 𝜆L𝑠𝑒𝑞 . (5)

After the first stage of training completes, a sequence represen-
tation considering the geometric condition is obtained and such
representation can be decoded to valid construction sequences.
The sequence representation is then fixed and will be used as a
supervised training target in the second stage.

In the second stage, only pointnet++ is trained under the geome-
try pretext task. The pointnet++ is trained under a supervised man-
ner where both geometric embeddings and sequence embeddings
are targets. Detail of geometry pretext task and the corresponding
loss refers to Section 3.3.3 and Figure 3 (c).

In this sense, sequence representation is built under the guidance
of CAD geometry in the first phase. Geometry representation is
also aligned with sequence representation in the second phase.

3.3.2 The sequence pretext task. The understanding of CAD se-
quences and the decoding ability of a CAD representation are of
vital importance since sequence representation is aimed at gener-
ating CAD sequences. In this sense, we follow DeepCAD [50] and
add sequence reconstruction as a special pretext task along with
the training process. For a CAD model𝑀 with command sequence
𝑀𝑠𝑒𝑞 = [𝐶1; ...;𝐶𝑁 ] including both the command type 𝑐𝑡 and pa-
rameters 𝑐𝑝 of 𝐶𝑖 , the sequence representation ℎ𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞) will be
fed into a transformer decoder and a reconstructed CAD sequence
�̂�𝑠𝑒𝑞 is obtained. A sequence reconstruction loss L𝑠𝑒𝑞 is added to
the first stage of training process, shown in Equation 6.

L𝑠𝑒𝑞 =

𝑁𝑚∑︁
𝑖=1

ℓ

(
𝑐𝑖𝑡 , 𝑐

𝑖
𝑡 ,

)
+ 𝛽

𝑁𝑚∑︁
𝑖=1

𝐾𝑚∑︁
𝑗=1

ℓ

(
𝑐
𝑖, 𝑗
𝑝 , 𝑐

𝑖, 𝑗
𝑝

)
. (6)

In Equation 6, 𝑐𝑖𝑡 denotes predicted command type and 𝑐𝑖𝑡 is the
ground truth. 𝑐𝑖, 𝑗𝑝 and 𝑐𝑖, 𝑗𝑝 represent predicted and ground truth
parameters respectively. ℓ is the standard cross entropy loss same
as DeepCAD [50]. 𝐾𝑚 is the number of parameters and 𝛽 is a factor
balancing loss of command and argument. For more details about
CAD sequences and their modelling methods, please refer to [50].

3.3.3 The geometry pretext task. To further correlate the point
cloud representation and sequence representation, we adopt a ge-
ometry pretext task operating on pointcloud feature extractor in
the hope of multimodal alignment. We use both pointcloud and
sequence representation in the multimodal representation space to
help integrate the knowledge of sequence generation into point-
net++ feature extractor and preserve the ability of geometric repre-
sentation. The architecture is shown in part (c) of Figure 3 where

Algorithm 1 Sinkhorn Algorithm

1: Input: {ℎ̂𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞)}𝑛𝑖=1, {ℎ𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞)}
𝑛
𝑗=1, 𝜖,

probability vectors 𝜇, 𝜈
2: 𝜎 = 1

𝑛 1𝑛, 𝜋 (1) = 11𝑇

3: 𝐶𝑖 𝑗 = 𝑐 (ℎ̂𝑠𝑒𝑞𝑖 , ℎ𝑠𝑒𝑞 𝑗 ), 𝐴𝑖 𝑗 = 𝑒−
𝐶𝑖 𝑗

𝜖

4: for 𝑡 = 1, 2, 3, ... do
5: 𝑄 = 𝐴 ⊙ 𝜋 (𝑡 ) ⊲ ⊙ is Hadamard Product
6: for 𝑘 = 1, 2, 3, ..., 𝐾 do
7: 𝛿 =

𝜇

𝑛𝑄𝜎
, 𝜎 = 𝜈

𝑛𝑄𝑇 𝛿

8: end for
9: end for
10: 𝑂𝑇 = ⟨𝜋,𝐶⟩ ⊲ ⟨·, ·⟩ is the Frobenius dot-product
11: return 𝑂𝑇

𝐹𝐶𝑝𝑐 and 𝐹𝐶𝑠𝑒𝑞 are used to generate geometric representations
ℎ̂𝑝𝑐 (𝑀𝑝𝑐 ) and sequence representations ℎ̂𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞) respectively.

As pointnet++ naturally generates logits used for classification,
MMD loss [19] is utilized to measure the geometric discrepancy L𝑔
between the output of 𝐹𝐶𝑝𝑐 and the geometric representation so
as to preserve the ability to acquire geometric features.

For transferring CAD sequence representations, as similar CAD
geometries often correspond to significantly different CAD con-
struction sequences, losses such as MSE will guide ℎ̂𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞𝑖 ) to
the midpoint of corresponding sequence embeddings when the
network converges. In this sense, a specially designed sequence
discrepancy L𝑠 is adopted to fit the sequence representations gen-
erated by 𝐹𝐶𝑠𝑒𝑞 for downstream sequence generation tasks. L𝑠 is
a combination of MSE loss and Optimal Transport (OT) [2, 5, 12]
where OT helps pulling ℎ̂𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞𝑖 ) out of the midpoint and the
cosine similarity based transportation plan helps guide ℎ̂𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞)
to the nearby cluster centers of ℎ𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞) within a batch, namely
the neighborhood of the corresponding sequence embedding[5].
Such batchwise transport plan also helps the pointcloud feature
extractor gain the knowledge about the distinctions between geo-
metrically similar CAD models, namely the shape details. Formally,
OT is calculated via Equation 7

𝑂𝑇 (ℎ̂𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞𝑖 ), ℎ𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞 𝑗 ))

= min
𝑇 ∈Π (𝑢,𝑣)

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑇𝑖 𝑗 · 𝑐 (ℎ̂𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞𝑖 ), ℎ𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞 𝑗 ))

= min
𝑇 ∈Π (𝑢,𝑣)

⟨𝑇,𝐶⟩,

(7)

where Π(𝑢, 𝑣) = {𝑇 ∈ 𝑅𝑁×𝐾
+ | 𝑇1𝐾 = 1

𝑁
1𝑁 ,𝑇1𝑁 = 1

𝐾
1𝐾 }. 1𝐾

denotes 1-dimensional one vector. 𝐶 is the cost matrix where 𝐶𝑖 𝑗 =
𝑐 (ℎ̂𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞𝑖 ), ℎ𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞 𝑗 )) (𝑐 (·, ·) = 1−cos(·, ·)). Implementation
of OT follows Sinkhorn algorithm [11] shown in Algorithm 1.

The loss of the geometry pretext task is shown in Equation 8
where 𝜇 goes from 1 to 0 and 𝜙 goes from 0 to 1.

L𝑔𝑒𝑜 =𝜇L𝑔 + 𝜙L𝑠
L𝑔 =𝑀𝑀𝐷 (ℎ̂𝑝𝑐 (𝑀𝑝𝑐𝑖 )

L𝑠 =𝑀𝑆𝐸 (ℎ̂𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞𝑖 ), ℎ𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞𝑖 )) +

𝑂𝑇 (ℎ̂𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞𝑖 ), ℎ𝑠𝑒𝑞 (𝑀𝑠𝑒𝑞𝑖 )) .

(8)
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3.4 Data Augmentation
As CAD models are sophisticated and multimodal, data augmen-
tation is difficult since single modal augmentation tends to cause
semantic misalignment [1]. For a good multimodal CAD data aug-
mentation scheme, it is required to add diversity of both modalities
and follow the genre of human designs. Previous attempt [50] aug-
ments CAD models in sequence domain, but often brings about
invalid topology, nor does it preserve human design styles.

To alleviate this problem, we conduct augmentation in geometric
domain and propose a translation strategy to convert the augmented
geometric shapes into corresponding CAD sequences. Specifically,
the geometric shape of a CAD model is randomly scaled, translated
and rotated. Then the corresponding parameters in the CAD con-
struction sequence, namely sketch size, location and orientation,
are altered according to the adjustment of geometric shapes.

For the corresponding CAD sequence of a rotated, scaled and
translated CAD geometry, the formal definition is as follows. For an
augmented CADgeometrywith scaling 𝑆 , translation𝑇 and rotation
𝑅, the scale is multiplied by a scale factor 𝑆𝑐 . The orientation is
perturbed by 𝑅𝑐 . The sketch plane location is adjusted by 𝑅𝑐 and
further jittered by 𝑇𝑐 . 𝑆𝑐 , 𝑇𝑐 and 𝑅𝑐 obey normal distribution. The
augmentation strategy S(𝑀) for a model𝑀 is shown in Equation 9

𝑆 (𝑀) = [𝐶∗
1 ; ...;𝐶∗

𝑁 ],

𝐶∗
𝑖 = [𝑐𝑖

∗
𝑡 , 𝑐

𝑖∗
𝑝 ],

𝑐𝑖
∗
𝑡 = 𝑐𝑖𝑡 ,

𝑐𝑖
∗
𝑝 =


𝑐𝑝 ∗ 𝑆𝑐 𝑐𝑝 ∈ {𝑒1, 𝑒2, 𝑠}, 𝑆𝑐 ∼ 𝑁 (0.8, 1.2)
𝑐𝑝 ∗ 𝑅𝑐 𝑐𝑝 ∈ {𝜃, 𝜙,𝛾}, 𝑅𝑐 ∼ 𝑁 (0.8, 1.2)
𝑇 (𝑐𝑝 ) 𝑐𝑝 ∈ {𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 }
𝑐𝑝 otherwise

,

𝑇 (𝑐𝑝 ) =


𝑟 ∗ cos(𝜃 ∗ 𝑅𝑐 ) +𝑇𝑐 𝑐𝑝 = 𝑝𝑥

𝑟 ∗ cos(𝜙 ∗ 𝑅𝑐 ) +𝑇𝑐 𝑐𝑝 = 𝑝𝑦

𝑟 ∗ cos(𝛾 ∗ 𝑅𝑐 ) +𝑇𝑐 𝑐𝑝 = 𝑝𝑧

,

𝑟 = (𝑝2
𝑥 + 𝑝2

𝑦 + 𝑝2
𝑧 )1/2, 𝑇𝑐 ∼ 𝑁 (−0.05, 0.05),

(9)

where 𝑒1 and 𝑒2 refers to extrusion height in both directions. 𝑠 refers
to scale of the corresponding sketch profile. 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 represent the
location while 𝜃, 𝜙,𝛾 refers to orientation of a sketch plane.

To make sure the augmented CAD models of S(𝑀) have legal
geometric representation, we further examine them by attempting
to render its point cloud and discard all failure cases.

In this sense, both the geometric shape and the sequence repre-
sentation of CAD models are augmented. The topological validity
and the human design style are also preserved.

4 EXPERIMENTS
4.1 Datasets
DeepCAD. DeepCAD is a multimodal CAD dataset composed of
parametric construction sequences which can be converted into
pointclouds. MultiCAD uses both parametric sequences and ren-
dered pointclouds for training and testing.

Fushion 360. Fushion 360 [49] is similar to DeepCAD but only
contains 8,625 CAD construction sequences. There exists a domain
gap between construction sequences in DeepCAD and Fushion360.

Mechanical Components Benchmark The Mechanical Com-
ponents Benchmark (MCB) [21] is a dataset consisting of 58,696
3D mechanical components with 68 classes. MCB is a challeng-
ing benchmark for classification as the distinction between classes
lies in shape details. We use all data in MCB to test pointcloud
classification ability of the geometric representation.

4.2 Implementation details
Runtime Environments. All experiments are conducted on two
RTX 3090 GPUs along with Pytorch 1.11.0 running on CUDA 11.3.

Experiment Settings The reported results are trained under
DeepCAD dataset with batch size 512 for 1000 epochs. Dropout
rate is 0.3 for transformer encoder while 0.1 for pointnet++ encoder.
Learning rate is set to 0.001 with 2000 steps linear warmup and
gradient clipping of 1.0. For reconstruction tasks, we follow [39]
and select 32 candidates via top-K sampling. For hyperparameters
of MMCL, we fix 𝛼 at 2, 𝛾 increases from 0 to 2 and 𝜎 decreases
from 2 to 1 linearly. For training stability, we pretrain pointnet++
encoder in a simcse-like self-supervised manner first.

4.3 Baseline Methods
As MultiCAD is the first work of multimodal CAD representation
learning, no previous work can make direct comparisons. We make
slight modifications to several multimodal interaction methods. The
feature extractors of all baseline methods are the same as MultiCAD.

• CLIP: The first baseline is adopting CLIP [42], a multimodal
contrastive learning method operating on image-text pairs.
We replace the image encoder with our pointcloud encoder
and use the sequence encoder to serve as text encoder in our
problem setting. For CAD sequence decoding, the sequence
deocder proposed in Section 3.3.2 is trained afterwards based
on embeddings generated by sequence encoder.

• CrossPoint: The second baseline is a modification of Cross-
Point [1], a recent work on 3D multimodal representation
learning. In CrossPoint, two views of a 3D model are first
aligned via a contrastive loss. Another contrastive loss is fur-
ther added above the feature extractors where crossmodal
representations are further aligned. In our problem setting,
we replace pointcloud feature extractor as sequence encoder.
Image feature extractor is replaced as pointcloud feature
extractor. A CAD sequence decoder is trained on sequence
embedding after multimodal pretraining completes.

4.4 Experimental Results
4.4.1 Measurements of the Representation Space. As is mentioned
above, multi-modal contrastive learning can make representation
space of CAD models more aligned and uniform. We use k-means
clustering and calculate Sum Squared Error (SSE) of each cluster
and Silhoutte Coefficient (SC) [41] for measurement. SSE can be
regarded as alignment metric while SC for alignment and unifor-
mity. Formal definition of SSE and SC are shown in Equation 10
and Equation 11 where 𝑥𝑖 is a data point in set 𝑋 of size 𝑛, 𝑎𝑖 is the
average distance between 𝑥𝑖 and other points in its cluster and 𝑏𝑖
is the distance between 𝑥𝑖 and other clusters.

SSE = Σ𝑛𝑖=1 (𝑥𝑖 − 𝑥)
2 . (10)

SC =
𝑏 (𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏 (𝑖)} . (11)

1771



MultiCAD: Contrastive Representation Learning for Multi-modal 3D Computer-Aided Design Models CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

DeepCAD (Test Set) Fushion 360 (Test Set)
Method Pointcloud → Sequence Sequence → Pointcloud Pointcloud → Sequence Sequence → Pointcloud

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Unimodal Methods
DeepCAD 36.48% 61.87% 68.19% 37.66% 52.30% 59.37% 8.92% 16.78% 22.10% 7.08% 35.41% 70.82%
Self-supervised Pointnet++ 21.47% 45.39% 51.35% 20.79% 38.47% 44.53% 6.34% 14.75% 18.67% 9.13% 46.38% 64.75%
Baseline Methods
CLIP [42] 53.85% 67.81% 74.41% 60.87% 76.44% 82.38% 30.64% 52.88% 61.99% 34.23% 62.01% 71.08%
CrossPoint [1] 64.07% 77.12% 81.66% 66.17% 80.88% 85.26% 15.43% 39.16% 50.84% 22.35% 46.27% 70.57%
Our Method
MultiCAD 72.44% 80.19% 84.84% 80.82% 92.18% 94.76% 57.91% 72.01% 76.91% 61.97% 81.37% 87.27%
MultiCAD w/ Aug. 77.23% 85.96% 89.35% 84.29% 93.79% 95.82% 58.54% 72.65% 76.89% 63.06% 83.40% 88.63%

Table 1: Qualitative results for multimodal CAD retrieval. Accuracy stands for the average of command and parameter accuracy
for CAD sequences and IoU for CAD geometries. For unimodal methods, we train an encoder form another modality to fit the
embeddings. Baseline methods are implemented as shown in section 4.3.
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Figure 4: Illustration of alignment and uniformity in the
latent space. Each line refers to Sum of Squared Errors (SSE)
and Silhoutte Coefficients (SC) of test set embeddings in dif-
ferent numbers of clustering centers under different training
strategies. The X axis refers to the proportion between num-
ber of cluster centers and the size of the test set.

We evaluate all methods on the unlabelled DeepCAD test set
and report SSE and SC under different cluster numbers in different
methods. Results are plotted in Figure 4. From the plots we can
observe that our model’s SSE and SC is better than both unimodal
methods and baselines. Table 2 shows quantitative results where
our model has reduced mean SSE and has increased mean SC by a
large margin, illustrating that our model has combined knowledge
of both CAD sequences and geometry, and the latent space of our
model is far more aligned and uniform than baselines and unimodal
methods.

Method Mean SSE ↓ Mean SC ↑
Unimodal Methods
Pointnet + + w/ simcse‡ 64.11 0.213
Original DeepCAD 14.72 0.058

Baseline Methods
CLIP∗ [42] 14.35 0.196
CrossPoint∗ [1] 13.90 0.237

Our Method
MultiCAD 9.43 0.263
MultiCAD w/ Aug. 9.23 0.269

Table 2: Average Sum of Square Errors and Silhoutte Coef-
ficients of DeepCAD test set embeddings under different
numbers of clustering centers. Each row refers to a different
training strategy. ∗ indicates applying the modality interac-
tion methods to the feature extractors of CAD sequences and
pointclouds.

To further illustrate the advantages of our proposed model on
representation space, we conduct an experiment on multimodal
CAD retrieval, which is challenging since similar CAD geometries
may correspond to significantly different CAD shapes and vice
versa. The experiment is conducted on DeepCAD and Fushion 360
test set where both construction sequence and point cloud of each
CAD model are converted into a sequence embedding and a point-
cloud embedding via the corresponding encoders. Each embedding
is used as a query while embeddings from the opposite modality
serve as candidates. We find K Nearest Neighbors in representation
space under Euclidean Distance between embeddings and report
the results. The accuracy of sequence retrieval is calculated via
averaging command and parameter accuracy of CAD construction
sequences and IoU between pointclouds are utilized to measure ac-
curacy of retrieved CAD shapes. As is shown in Table 1, MultiCAD
has largely surpassed both baselines and unimodal results.

In the following sections, we will exhibit our model’s perfor-
mance on downstream tasks: converting CAD point clouds to CAD
sequences and downstream vision recognition tasks on geometric
feature extractors.
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Test Set Pointcloud

MultiCAD

MultiCAD with 

Augmentation

DeepCAD

CrossPoint Baseline

CLIP Baseline

Figure 5: Qualitative results of converting pointclouds to CAD construction sequences. Pointclouds are from DeepCAD test set.

Method Acc(ct) ↑ Acc(cp) ↑Median CD↓ Invalid Rate↓
Methods tested on DeepCAD dataset follow:
Unimodal Method
DeepCAD† 80.39 69.60 0.919 15.44
Baseline Methods
CrossPoint∗ [1] 71.67 58.04 2.873 24.83
CLIP∗ [1] 69.3 57.48 2.576 23.96
Our Method
MultiCAD 88.21 79.52 0.875 13.67
MultiCAD w/ Aug. 89.43 79.81 0.809 11.46
Methods tested on Fushion360 dataset follow:
Unimodal Method
DeepCAD† 67.09 57.65 8.92 25.17
Baseline Methods
CrossPoint∗ [1] 61.85 55.76 26.11 39.55
CLIP∗ [42] 67.03 56.39 14.32 21.24
Our Method
MultiCAD 77.84 72.44 4.33 17.95
MultiCAD w/ Aug. 79.27 71.73 4.22 16.52

Table 3: Quantitative Results for CAD Sequence Reconstruc-
tion from Pointclouds.† indicates results achieved by re-
implementing the methods proposed in DeepCAD[50] along
its source code. ∗ indicates applying the modality interac-
tion methods to the feature extractors of CAD sequences and
pointclouds. Acc(cp) , Acc(ct) , and Invalid Rate are all multi-
plied by 100%; Median CD is multiplied by 102.

4.4.2 Performance on Sequence Reconstruction. In this part we test
the performance of converting CAD point clouds into CAD se-
quences, which is the starting point of user editing. The experiment
is conducted on DeepCAD and Fushion360 test set. We test the
likeliness between the reconstructed CAD sequence and the orig-
inal one using sequence modelling metrics from DeepCAD. The
experimental results of different methods are shown in Table 3.

Acc(ct) and Acc(cp) stand for accuracy of commands and param-
eters between predicted sequence and ground truth. Median CD
refers to the median Chamfer Distance between the point clouds
generated by the reconstructed sequence and the ground truth.
Invalid Rate represents the proportion of the decoded sequences
which cannot be constructed by a CAD kernel or converted into
pointclouds, serving as a validity metric for reconstruction [50]. A
qualitative result of the reconstructed CAD sequences is shown in
Figure 5.

From the experiment results, we can discover that MultiCAD
and its augmented version has surpassed both baseline and uni-
modal methods and by a large margin in all metrics. This means
that, for CAD models, representation containing information from
both modalities is vital for multimodal translation tasks such as
converting CAD point clouds into CAD sequences. Moreover, the
result of the baseline method shows the necessity of training the
sequence decoder simultaneously and not aligning representations
from different modalities at the beginning of the training procedure.
4.4.3 Performance on Geometric Representation. In this section,
we test the geometric representation ability of our multimodal
contrastive learning scheme via pointcloud classification.

We first evaluate the transfer performance of unimodal methods,
multimodal baselines and our method. As DeepCAD is not labelled,
we pretrain all methods onDeepCAD and compare the classification
performance on MCB via linear probing, namely fixing the feature
extractor and tuning the linear layer only. The results are shown in
Table 4. From the table we can conclude that information from CAD
sequence is beneficial to CAD geometric representation. Moreover,
our multimodal interaction scheme can better grasp the information
from CAD construction sequences.

We also compare the geometric representation ability of our
multimodal contrastive learning scheme against different models
trained via supervised learning on MCB dataset. Results are listed
in Table 5. In this experiment, our network is first pretrained on
DeepCAD dataset via our multimodal contrastive learning scheme.
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Method Backbone Accobject ↑ Accclass ↑
Unimodal
Pointnet + + w/ simcse# Pointnet++ 88.62% 75.88%
Original DeepCAD Pointnet++ 91.72% 81.24%
Mulitmodal
Crosspoint∗ [1] Pointnet++ 89.59% 80.35%
CLIP∗ [42] Pointnet++ 91.80% 81.26%
MultiCAD Pointnet++ 92.30% 82.02%
MultiCAD w/ Aug Pointnet++ 93.06% 82.87%

Table 4: Classification performance of transfer learning
on MCB dataset. All methods are pretrained on DeepCAD
dataset and tested on MCB via linear probing. # indicates the
pretrained Pointnet++ illustrated in Section 4.2. ∗ indicates
applying the modality interaction methods to the feature
extractors of CAD sequences and pointclouds.

Method Backbone Accobject ↑ Accclass ↑

Pointnet + +† Pointnet++ 87.45% 73.68%
PointCNN† [26] PointCNN 93.89% 81.85%
SpiderCNN† [54] SpiderCNN 93.59% 79.70%
MultiCAD w/ Aug§ Pointnet++ 94.55% 85.13%

Table 5: Classification results of methods with different back-
bones on MCB dataset. † indicates supervised training on
MCB dataset. § indicates pretraining on DeepCAD dataset
and finetune the entire network on MCB dataset.
The entire network is then finetuned on MCB. The table shows that
the result on both Accclass and Accobject have even surpassed bench-
mark results with far stronger backbones such as PointCNN and
SpiderCNN significantly. Such result is aspiring since the models in
MCB is far more complicated than most of the models in DeepCAD
dataset. Moreover, the great advantages stronger backbones bring
to classification performance can be wiped out when information
from the sequence modality is introduced. The results in Table 4
and Table 5 further show that introducing sequence modality as
well as batchwise Optimal Transport plan have granted feature
extractor more semantic information such as shape details, which
is the core distinction between categories in MCB [21].

4.5 Ablation study
In this part we show the effectiveness of our model design as well
as the training strategy adopted by MultiCAD. For different train-
ing strategies, we report multimodal retrieval results, which is a
direct measurement of the multimodal representation space. The
results are shown in Table 6 where each − represents removing a
component from model shown in the previous entry in the table.

From Table 6 we have several observations. First, contrastive
learning creates an aligned and uniform representation space that
improves multimodal retrieval by separating embeddings, even
without cross-modal information. This is evident from the ∼ 10%
𝑅@1 performance gain between methods E and F.

Moreover, our proposed MMCL introduces geometric informa-
tion to the CAD representation, which draws near CAD models
in the representation space only when they are both alike in CAD
geometry and CAD sequences. The introduction of geometric infor-
mation makes multimodal retrieval possible, thus yielding ∼ 20%

DeepCAD (Test Set)
ID Methods Pointcloud Sequence

→ Sequence → Pointcloud
R@1 R@5 R@1 R@5

A. MultiCAD 72.44% 80.19% 80.82% 92.18%
Training Strategy

B. − OT at geometry 70.37% 78.98% 77.85% 88.27%pretext task
C. − Focal Loss 68.03% 76.94% 75.78% 86.23%
D. − Two Stage 64.54% 74.78% 67.73% 81.13%Training Strategy

Modality Interaction
E. − Pointcloud 45.62% 66.12% 46.01% 67.35%

Introduction∗

Contrastive Learning
F. − Contrastive 36.48% 61.87% 37.66% 52.30%

Learning∗

Table 6: Ablation study on multimodal retrieval. - means
removing a component from the model exhibited in the pre-
vious entry of the table. ∗ represents training a pointnet++
to fit the representation space when training completes.

performance gains at 𝑅@1, as shown between method D and E,
which is also the biggest improvement. As for training strategies,
our proposed two-stage training strategy requires no explicit align-
ment between multimodal representations, which improves the
training stability of multimodal contrastive learning. This brings
about 4 ∼ 8% performance gains at 𝑅@1, as shown between method
C and D. The introduction of focal loss makes the model focus on
models that are similar in one modality but not alike in the other
during MMCL, bringing ∼ 2% performance gains at 𝑅@1.

Finally, adopting optimal transport at geometry pretext task
makes pointcloud representation approach neighborhood of cor-
responding sequence representation and encodes more geometric
details in pointcloud representation, which further brings forth
3 ∼ 4% performance gains at 𝑅@1 and 𝑅@5 in pointcloud retrieval.

5 CONCLUSION AND FUTUREWORK
This paper unveils the multi-modality of CAD models and shows
the potential of considering both CAD construction sequence and
its geometry when learning CAD representations for effective infor-
mation and knowledge management. We define a novel similarity
measurement strategy and propose a multimodal contrastive loss
named MMCL. A representation learning model named MultiCAD
is designed based on MMCL. Two pretext tasks are built along with
multimodal contrastive learning to make the representation appli-
cable to downstream tasks. Extensive experiments on both CAD
sequences and point clouds show that MultiCAD has remarkable
performance on both sequence and geometric downstream tasks.
Future work includes adopting more CAD data formats such as
B-rep as well as modelling the geometry of high complexity parts.
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