期刊论文


[1].         “High-speed GaN-based Superluminescent Diode For 4.57 Gbps Visible Light Communication”, Crystals, 12(2), 191 (2022)

[2].         “46.4 Gbps visible light communication system utilizing a compact tricolor laser transmitter”, Optics Express, 30(3) 4365-4373 (2022)

[3].         “GaN-based micro-light-emitting diode driven by a monolithic integrated ultraviolet phototransistor”, IEEE Electron Device Letters, 43(1), 80-83 (2022)

[4].         “Improved electro-optical and photoelectric performance of GaN-based micro-LEDs with atomic layer deposited AlN passivation layer”, Optics Express, 29(22), 36559-36566 (2021)

[5].         High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers”, PhotoniX 2, 16 (2021)

[6].         Demonstration of a Low-Complexity Memory-Polynomial-aided Neural Network Equalizer for CAP Visible-Light Communication with Superluminescent Diode”, Opto-Electronic Advances 3, 200009 (2020) (邀稿)

[7].         Blue laser diode system with an enhanced wavelength tuning range”, IEEE Photonics Journal, 12(2) 1502110 (2020)

[8].         Non-line-of-sight methodology for high-speed wireless optical communication in highly turbid water”, Optics Communications, 461, 125264 (2020)

[9].         Toward reliable and energy-efficient visible light communication using amorphous silicon thin-film solar cells”, Optics Express, 27(24), 34542-34551 (2019)

[10].     Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication”, Optics Express, 27(21), 30450-30461 (2019).

[11].     On the realization of across wavy water-air-interface diffuse-line-of-sight communication based on an ultraviolet emitter”, Optics Express, 27(14), 19635-19649 (2019).

[12].     Analysis of Optical Injection on Red and Blue Laser Diodes for High Bit-rate Visible Light Communication”, Optics Communications, 49, 79-85 (2019).

[13].     Group-III-nitride superluminescent diodes for solid-state lighting and high-speed visible light communications”, IEEE Journal of Selected Topics in Quantum Electronics, 25(6), 2000110, Nov.-Dec. 2019 (2019) (邀稿).

[14].     A tutorial on laser-based lighting and visible light communications: device and technology”, Chinese Optics Letters, 17(4), 040601 (2019) (邀稿).

[15].     High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication”, Optics Express 26(20), 26355-26364 (2018).

[16].     Investigation of self-injection locked visible laser diodes for high bit-rate visible light communication”, IEEE Photonics Journal. 10(4) 7905511 (2018)

[17].     Light based underwater wireless communications”, Japanese Journal of Applied Physics, 57(8S2), 08PA06 (2018) (综述)

[18].    375-nm ultraviolet-laser based non-line-of-sight underwater optical communication”. Optics Express, 26(10), 12870-12877 (2018).

[19].    3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-Photodetector”. Optics Express, 26(3), 3037-3045 (2018).

[20].    Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications”. Optics Express 26(6), A219-A226 (2018).

[21].    71-Mbit/s Ultraviolet-B LED Communication Link based on 8-QAM-OFDM Modulation”, Optics Express, 25(19), 23267-23274 (2017).

[22].    “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and RGB phosphors”. Optics Express, 25(15), 17480-17487 (2017).

[23].    Ultralow Self-Doping in 2D Hybrid Perovskite Single Crystals”. Nano Letters, 17 (8), pp 4759–4767 (2017).

[24].    Semipolar III-nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system” Applied Physics Express, 10, 042201 (2017).

[25].    True Yellow Light-emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-based White Light”. ACS Photonics, 3(11), 2089–2095 (2016).

[26].    20-meter underwater wireless optical communication link with 1.5 Gbps data rate”, Optics Express, 24 (22), 25502-25509 (2016).

[27].    High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth”, Optics Express, 24 (18), 20281-20286 (2016).

[28].    Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes”. Applied Physics Letters, 109, 081902 (2016).

[29].    Ultrabroad Linewidth Orange-emitting Nanowires LED for High CRI Laser-based White Lighting and GigaHertz Communications.”, Optics Express, 24 (17), 19228-19236 (2016).

[30].    Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics”, Nano Letters, 16(7), 4616-4623 (2016)

[31].    Perovskite Nanocrystals as a Color Converter for Visible Light Communication”, ACS Photonics, 3(7), 1150-1156 (2016) (当年阅读量最多的文章)

[32].    Highly Transparent, Low-Haze, Hybrid Cellulose Nanopaper as Electrodes for Flexible Electronics”, Nanoscale, 8, 12294-12306 (2016).

[33].    “On the optical and microstrain analysis of graded InGaN/GaN MQW based on plasma assisted molecular beam epitaxy” Optical Material Express, 6(6), 2052-2062 (2016).

[34].   "High brightness semipolar                                                blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications” Optics Letters, 41(11), 2608-2611 (2016).

[35].    "High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm", ACS Photonics, 3 (2), pp 262–268 (2016).

[36].    "Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light emitters", Nano Letters, 16 (2), pp 1056–1063 (2016).

[37].    "2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system", Optics Express, 23(23), 29779-29787 (2015).

[38].    Achieving uniform carriers distribution in MBE grown compositionally graded InGaN multiple-quantum-well LEDs” IEEE Photonics Journal, 7(3), 2300209 (2015).

[39].    Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing”. Optics Express, 23(6), 7991-7998 (2015).

[40].    "Long-term RF Burn-in Effects on Dielectric Charging of MEMS Capacitive Switches," IEEE Transactions on Device and Materials Reliability, 13(1), 310-315 (2013).

[41].    Thinning and functionalization of few-layer graphene sheets by CF4 plasma”, Nanoscale Research Letters 2012, 7:268.


部分重要会议论文

[1].    High-speed visible laser light communication: devices, systems and applications”, Proc. SPIE, 1171109, invited paper at SPIE Photonics West (2021).

[2].    Blue Superluminescent Diodes with GHz Bandwidth Exciting Perovskite Nanocrystals for High CRI White Lighting and High-Speed VLC”, CLEO: Science and Innovations, SM3N. 4 (2019).

[3].    Laser-based visible light communications and underwater wireless optical communications: a device perspective”, Proc. SPIE, 10939-13, SPIE Photonics West (2019).

[4].    Study on laser-based white light sources”, Proc. SPIE, 10940-52, presented at SPIE Photonics West (2019).

[5].    High power GaN-based blue superluminescent diode exceeding 450 mW”, IEEE International Semiconductor Laser Conference (ISLC 2018).

[6].    Worst-Case Residual Clipping Noise Power Model for Bit Loading in LACO-OFDM”, 2018 Global LiFi Congress (GLC), p. 08319113 (2018).

[7].     "Enhanced performance of 450 nm GaN laser diodes with an optical feedback for high bit-rate visible light communication," in Conference on Lasers and Electro-Optics (CLEO), paper JTu2A.29 (2018).

[8].     “High performance self-injection locked 524 nm green laser diode for high bitrate visible light communications”, Optical Fiber Communication Conference (OFC), OSA Technical Digest, p. Th2A.15 (2018).

[9].     "Underwater wireless optical communications: from system-level demonstrations to channel modelling," in 22nd Microoptics Conference (MOC), pp. 34-35 (2017).

[10]. "Visible Lasers and Emerging Color Converters for Lighting and Visible Light Communications," OSA Technical Digest in Light, Energy and the Environment, p. SW3C.2 (2017).

[11]. “Going beyond 10-meter, Gbit/s underwater optical wireless communication links based on visible lasers”. 2017 Opto-Electronics and Communications Conference (OECC), Singapore (2017).

[12]. “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications”, Proc. SPIE, Vol 10104, 101041U-1 (2017).

[13]. High gain semiconductor optical amplifier – laser diode at visible wavelength”, IEEE International Electron Devices Meeting (IEDM), pp. 22.4 (2016).