个人信息Personal Information
教师拼音名称:Zhang Guohua
出生日期:1981-04-03
电子邮箱:zhanggh@fudan.edu.cn
入职时间:2007-07-06
所在单位:数学科学学院
学历:研究生毕业
性别:男
学位:博士学位
职称:教授
在职信息:在职
主要任职:教师
博士生导师
硕士生导师
扫描关注
- [1]ON RECURRENCE OVER SUBSETS AND WEAK MIXING.PACIFIC JOURNAL OF MATHEMATICS.2015,277 (2):399-424
- [2]MOBIUS DISJOINTNESS FOR TOPOLOGICAL MODELS OF ERGODIC SYSTEMS WITH DISCRETE SPECTRUM.Journal of Modern Dynamics.2019,14 :277-290
- [3]Local variational principle concerning entropy of a sofic group action.JOURNAL OF FUNCTIONAL ANALYSIS.2012,262 (4):1954-1985
- [4]DISCRETE SPECTRUM FOR AMENABLE GROUP ACTIONS.DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS.2021,41 (12):5871-5886
- [5]VARIATIONAL PRINCIPLES OF PRESSURE.DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS.2009,24 (4):1409-1435
- [6]Relativization of dynamical properties.Science China-Mathematics.2012,55 (5):913-936
- [7]A dynamical dimension transference principle for dynamical diophantine approximation.Mathematische Zeitschrift.2021,298 (1-2):161-191
- [8]Lowering topological entropy over subsets.Ergodic Theory and Dynamical Systems.2010,30 (1):181-209
- [9]Dimensional entropy over sets and fibres.Nonlinearity.2011,24 (8):2325-2346
- [10]Co-induction in dynamical systems.Ergodic Theory and Dynamical Systems.2012,32 (3):919-940
- [11]On sets with recurrence properties, their topological structure and entropy.Topology and Its Applications.2012,159 (7):1767-1777
- [12]On the dynamics of a 4d local Cournot model.Applied Mathematics & Information Sciences.2013,7 (3):857-865
- [13]On local aspects of topological weak mixing, sequence entropy and chaos.Ergodic Theory and Dynamical Systems.2014,34 (5):1615-1639
- [14]LOWERING TOPOLOGICAL ENTROPY OVER SUBSETS REVISITED.Transactions of the American Mathematical Society.2014,366 (8):4423-4442
- [15]Modeling potential as fiber entropy and pressure as entropy.Ergodic Theory and Dynamical Systems.2015,35 (4):1165-1186
- [16]Chaotic behavior of group actions.DYNAMICS AND NUMBERS.2016,669 :299-315
- [17]Analogues of Auslander-Yorke theorems for multi-sensitivity.Ergodic Theory and Dynamical Systems.2018,38 (2):651-665
- [18]Multi-sensitivity, multi-transitivity and Delta-transitivity.DYNAMICS: TOPOLOGY AND NUMBERS.2020,744 :231-244
|