张国华
教授
博士生导师
个人信息Personal Information
教师拼音名称:Zhang Guohua
出生日期:1981-04-03
电子邮箱:zhanggh@fudan.edu.cn
入职时间:2007-07-06
所在单位:数学科学学院
学历:研究生毕业
性别:男
学位:博士学位
职称:教授
在职信息:在职
主要任职:教师
博士生导师
硕士生导师
学科:基础数学
扫描关注
- [1] ON RECURRENCE OVER SUBSETS AND WEAK MIXING -PACIFIC JOURNAL OF MATHEMATICS -2015-01-01 -277
- [2] MOBIUS DISJOINTNESS FOR TOPOLOGICAL MODELS OF ERGODIC SYSTEMS WITH DISCRETE SPECTRUM -Journal of Modern Dynamics -2019-01-01 -14
- [3] Local variational principle concerning entropy of a sofic group action -JOURNAL OF FUNCTIONAL ANALYSIS -2012-01-01 -262
- [4] DISCRETE SPECTRUM FOR AMENABLE GROUP ACTIONS -DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS -2021-01-01 -41
- [5] VARIATIONAL PRINCIPLES OF PRESSURE -DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS -2009-01-01 -24
- [6] Relativization of dynamical properties -Science China-Mathematics -2012-01-01 -55
- [7] A dynamical dimension transference principle for dynamical diophantine approximation -Mathematische Zeitschrift -2021-01-01 -298
- [8] Lowering topological entropy over subsets -Ergodic Theory and Dynamical Systems -2010-01-01 -30
- [9] Dimensional entropy over sets and fibres -Nonlinearity -2011-01-01 -24
- [10] Co-induction in dynamical systems -Ergodic Theory and Dynamical Systems -2012-01-01 -32
- [11] On sets with recurrence properties, their topological structure and entropy -Topology and Its Applications -2012-01-01 -159
- [12] On the dynamics of a 4d local Cournot model -Applied Mathematics and Information Sciences -2013-01-01 -7
- [13] On local aspects of topological weak mixing, sequence entropy and chaos -Ergodic Theory and Dynamical Systems -2014-01-01 -34
- [14] LOWERING TOPOLOGICAL ENTROPY OVER SUBSETS REVISITED -Transactions of the American Mathematical Society -2014-01-01 -366
- [15] Modeling potential as fiber entropy and pressure as entropy -Ergodic Theory and Dynamical Systems -2015-01-01 -35
- [16] Chaotic behavior of group actions -DYNAMICS AND NUMBERS -2016-01-01 -669
- [17] Analogues of Auslander-Yorke theorems for multi-sensitivity -Ergodic Theory and Dynamical Systems -2018-01-01 -38
- [18] Multi-sensitivity, multi-transitivity and Delta-transitivity -DYNAMICS: TOPOLOGY AND NUMBERS -2020-01-01 -744
|