个人信息Personal Information
教师拼音名称:Chen Xiangzhong
电子邮箱:xzchen@fudan.edu.cn
所在单位:光电研究院(筹)
学历:博士研究生
性别:男
学位:博士学位
职称:青年研究员
在职信息:在职
博士生导师
硕士生导师
学科:材料物理与化学
-
1. 铁性纳米材料的可控合成与制备
Controlled Synthesis of Ferroic Nanomaterials
我们致力于发展可靠的铁电、铁磁纳米材料的化学合成方法(如溶胶凝胶、水热、高温热裂解等)和物理制备方法(如溅射、脉冲激光沉积、原子层沉积等)。通过控制反应条件,控制晶体生长的动力学和热力学,从而调控材料的组分、形貌、缺陷种类和密度,进一步调控其光、电、磁、热等物理性能。
We are dedicated to developing the reliable chemical synthesis methods (such as sol-gel, hydrothermal, thermal decompositions, etc.) and physical preparation methods (such as sputtering, pulsed laser deposition, atomic layer deposition, etc.) for ferroelectric and ferromagnetic nanomaterials. By controlling the reaction conditions to adjust the kinetics and thermodynamics of crystal growth, we can regulate the composition, morphology, defect type and density of the materials, which can further influence the optical, electrical, magnetic, and thermal properties.
Representative publications:
[1] Kim, D.; Rossell, M. D.; Campanini, M.; Erni, R.; Puigmartí-Luis, J.; Chen, X. Z.*; Pané, S.; Magnetoelectric coupling in micropatterned BaTiO3/CoFe2O4 epitaxial thin film structures: augmentation and site-dependency. Applied Physics Letters 2021,119, 012901. LINK
[2] Terzopoulou, A.; Hoop, M.; Chen, X. Z.*; Hirt, A. M.; Charilaou, M.; Shen, Y.; Mushtaq, F.; Pérez del Pino, A.; Logofatu, C.; Simonelli, L.; deMello, A. J.; Doonan, C. J.; Sort. J., Nelson, B. J.; Pané, S.*; Puigmartí-Luis, J.*, Mineralization-inspired synthesis of magnetic zeolitic imidazole frameworks. Angewandte Chemie International Edition, 2019, 58, 13550-13555. LINK
[3] Mushtaq, F.; Asani, A.; Hoop, M.; Chen, X. Z.*; Ahmed D., Nelson, B. J.; Pané, S.*, Highly efficient coaxial TiO2-PtPd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies. Advanced Functional Materials, 2016, 26 (38), 6995-7002. LINK
[4] Chen, X. Z.; Chen, X.; Guo, X.; Cui, Y. S.; Shen, Q. D.; Ge, H. X., Ordered arrays of defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption. Nanoscale 2014, 6 (22), 13945-13951. LINK
2. 铁性纳米材料中的新物性探究
Exploring Novel Physical Properties of Ferroic Nanomaterials
当纳米材料足够小时,尺寸效应便会显现。这时,材料会表现出许多不同于宏观尺度上的性能,例如:磁性材料的超顺磁状态、铁电材料中铁电性的消失、挠曲电效应占比的放大、氧化物材料的超弹性和形状记忆效应等等。我们也对这些随着尺寸减小而逐渐显现的材料的新奇特性感兴趣。一方面,我们会探寻这些材料中新奇物性(结构上)的来源,以及探究用何种手段可以去有效调控这些新奇的物性;另一方面,我们也会挖掘这些具有新物性的材料的应用潜力。
Size effects appear when materials turn to nano. Examples include superparamagnetic effect, dissappearance of ferroelectricity in nanoparticles, and so on. We are also interested in those emerging phenomena as the size decreases. On one hand, we explore the sources of these novel physical properties, and investigate the methods how to effectively regulate these novel properties. On the other hand, we also explore the potential applications of these materials with novel physical properties.
Representative publications:
[1] Kim, D.; Kim, M.; Reidt, S.; Han, H.; Baghizadeh, A.; Zeng, P.; Choi, H.; Puigmartí-Luis, J.; Trassin, M.; Nelson, B. J.; Chen, X. Z.*; Pané, S.*, Shape-memory effect in twisted ferroic nanocomposites. Nature Communications 2023, 14, 750. LINK
形状记忆合金的形状恢复能力通常会在临界尺寸(~50 nm)以下消失,这阻碍了其在纳米尺度上的应用。本文制备了基于铁电氧化物薄膜的扭曲结构,在这些结构中可以实现大于8%的可恢复形变,原因在于这种扭曲的几何结构设计放大了畴反转带来的应变。这种结构突破了传统的形状记忆合金的尺寸限制,为设计用于纳米机器人和人造肌肉纤维等小型执行装置的大行程形状记忆材料开辟了新的途径。
[2] Kim, M.; Kim, D.; Aktas, B.; Choi, H.; Puigmartí‐Luis, J.; Nelson, B. J.; Pané, S.*; Chen, X. Z.*, Strain‐Sensitive Flexible Magnetoelectric Ceramic Nanocomposites. Advanced Materials Technologies 2023, 2202097. LINK
磁电氧化物材料可以实现磁能与电能间的相互转换,可应用于先进传感、数据存储和通信,但其脆性使其应用很大程度局限于刚性器件。本文报道了柔性磁电氧化物复合材料(BaTiO3/CoFe2O4) 纳米薄膜结构,其磁电耦合系数可以通过机械拉伸的程度来调制,并且该调制是可逆的。该工作为功能氧化物薄膜在柔性器件中的集成提供了新的思路。
[3] Llacer-Wintle, J.; Renz, J.; Hertle, L.; Veciana, A.; Arx, D. v.; Wu, J.; Vukomanovic, M.; Puigmartí-Luis, J.; Nelson, B. J.; Chen, X. Z.*; Pané, S.*, The magnetopyroelectric effect: Heat-mediated magnetoelectricity in magnetic nanoparticle-ferroelectric polymer composites. Materials Horizons 2023, 10, 2627-2637. LINK
磁电复合材料通常是将压电相和磁致伸缩相复合在一起,通过应力介导实现磁-电耦合。然而,高性能磁致伸缩材料是制约新型磁电材料发展的瓶颈。本文制备了磁性纳米颗粒-热释电聚合物复合物。在高频交流磁场下,磁性纳米颗粒升温,导致热释电材料去极化,产生热释电流。这种磁-热释电效应为新型的磁-电材料,尤其是生物相容性好的磁-电材料提供了新的途径。
3. 磁-力-电-化学的多场耦合效应
Magneto-Mechano-Electro-Chemistry Coupling
压电材料和磁电耦合材料分别在外力和外磁场的作用下,会发生极化状态的改变,导致其表面上电荷发生不对称分布。产生的极化电场或者表面电荷可以用于引发或者增强某些化学反应。与传统的电化学反应相比较,磁电-化学或者压电-化学耦合效应不需要有线的电极,靠声波震动或磁场就可以无线地引发化学反应,因而在某些场合下会有重要的应用,例如狭小空间内的污物清理或者远程控制人体内药物递送。
Under external forces or magnetic fields, the polarization states of the piezoelectric or magneto-electric coupling materials will change respectively, leading to an asymmetric distribution of surface charges. The generated electric fields or surface charges can be used to initiate or enhance certain chemical reactions. Compared to the wired electroded electrochemical reactions, magneto-electro-chemical and piezo-electro-chemical coupling effects can wirelessly trigger chemical reactions through magnetic fields or acoustic vibrations. Such effects makes those materials useful in certain scenarios, such as cleaning the contaminants in confined spaces or remotely controlling the drug delivery within the human body.
Representative publications:
[1] Kim, D.; Efe, I.; Torlakcik, H.; Terzopoulou, A.; Picazo, A. V.; Siringil, E.; Mushtaq, F.; Franco, C.; von Arx, D.; Sevim, S.; Puigmartí-Luis, J.; Nelson, B.; Spaldin, N. A.; Gattinoni, C.*; Chen, X. Z.*; Pané, S.*, Magnetoelectric effect in hydrogen harvesting: magnetic field as a trigger of catalytic reactions. Advanced Materials, 2022, 2110612. LINK
本文利用具有磁电效应的复合多铁性CoFe2O4-BiFeO3核壳纳米粒子在交变磁场的作用下进行了催化水分解析氢反应。该发现将为磁感应可再生能源开辟新的途径。
[2] Mushtaq, F.*; Chen, X. Z.*; Torlakcik, H.; Steuer, C.; Hoop, M.; Siringil, E. C.; Marti, X.; Limburg, G.; Stipp, P.; Nelson, B. J.; Pané, S.*, Magnetoelectrically driven catalytic degradation of organics. Advanced Materials, 2019, 31, 1901378. LINK
本文利用具有磁电效应的复合多铁性核壳纳米粒子在交变磁场的作用下进行了高效催化降解有机污染物实验。
[3] Mushtaq, F.*; Chen, X. Z.*; Hoop, M.; Torlakcik, H.; Pellicer, E.; Sort, J.; Gattinoni, C.; Nelson, B. J.; Pané, S., Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation. iScience (cell press) 2018, 4, 236-246. LINK
本文制备了BiFeO3纳米材料,并且研究了其光催化、压电催化、以及光-压电联合催化过程。
[4] Mushtaq, F.*; Torlakcik, H.; Hoop, M.; Jang, B.; Carlson, F.; Grunow, T.; Läubli, N.; Ferreira, A.; Chen, X. Z.*; Nelson, B. J.; Pané, S., Motile Piezoelectric Nanoeels for Targeted Drug Delivery. Advanced Functional Materials, 2019, 29, 1808135. LINK
本文介绍了一种柔性的磁-电纳米复合结构作为微泳器。通过改变磁场的大小、频率及方向,可以选择使微泳器处于运动模式(药物几乎不释放)或药物释放模式(微泳器在原位),以此减小药物递送过程中对健康组织的副作用。
[5] Chen, X. Z.; Hoop, M.; Shamsudhin, N.; Huang, T.; Özkale, B.; Li, Q.; Siringil, E.; Mushtaq, F.; Tizio, L. D.; Nelson, B. J.; Pané, S., Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling and magnetically-assisted targeted drug delivery. Advanced Materials 2017, 29, 1605458. (This work has been reported in Advanced Science News, etc..) LINK
本工作设计和制造了基于磁电耦合材料的纳米棒。我们不仅能够通过磁场无线地将微结构精确地引导到目标位置,还可以改变磁场驱动模式,使其借助磁电效应,达到药物的可控释放。
4. 铁性材料的生物学效应与应用
Biological Effects and Applications of Ferroic Materials
磁性纳米材料被广泛应用在磁共振成像、磁性纳米粒子成像、磁热治疗等诊疗手段中;压电材料最近在细胞刺激、组织再生、声动力疗法、人-机交互界面等领域逐渐崭露头角。在这一方向上,我们也做了初步的尝试,将来会继续沿着这一方向进行研究:探索磁性、电性与生物体在细胞、活体层面上的相互作用,并以此为基础,挖掘这些材料在提供新型治疗方案方面的潜力。
Magnetic nanomaterials have been broadly used in the diagnostics and therapeutics, such as magnetic resonance imaging, magnetic nanoparticle imaging, and magnetic hyperthermia treatment. Piezoelectric materials are increasingly emerging in the fields of cell stimulation, tissue regeneration, sonodynamic therapy, and human-machine interaction. We have made preliminary attempts in these fields, and will continue to explore the interactions between the magnetism, electricity, and biological entities. And we will continue to investigate the potential of these materials in novel therapeutic solutions.
Representative publications:
[1] Dong, M.†; Wang, X. †; Chen, X. Z. †*; Mushtaq, F.; Deng, S.; Zhu, C.; Torlakcik, H.; Terzopoulou, A.; Qin, X.-H.; Xiao, X.; Puigmarti-Luis, J.; Choi, H.; Pêgo A. P.; Shen, Q.-D.*; Nelson, B. J.; Pané, S.*, 3D-printed Biodegradable Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron-like Cells. Advanced Functional Materials, 2020, 1910323. LINK
细胞疗法有望成为治疗神经性疾病的潜在疗法,然而,细胞的靶向运输和原位分化仍然具有挑战性。本文介绍了一种高度集成的多功能软螺旋微泳器,具有靶向神经细胞输送、无线神经元电刺激和任务过后酶降解等特点,将为创伤性损伤和中枢神经系统疾病的靶向细胞治疗开辟新的途径。
[2] Chen, X. Z.; Liu, J.-H.; Dong, M.; Müller, L.; Chatzipirpiridis, G.; Hu, C.; Terzopoulou, A.; Torlakcik, H.; Wang, X.; Mushtaq, F.; Puigmartí-Luis, J.; Shen, Q.-D.; Nelson, B. J.; Pané, S., Magnetically Driven Piezoelectric Soft Microswimmers for Neuron-like Cell Delivery and Neuronal Differentiation. Materials Horizons, 2019, 6, 1512-1516. LINK
治疗神经元创伤的主要障碍之一是神经元有限的再生能力。本文提出了一种用于神经再生治疗的非接触式、可控的神经细胞输送和原位分化的概念性方法。通过将磁控微泳者器件与压电材料相结合,以精确控制的方式运输细胞;同时超声振动下产生的电刺激可以促使类神经细胞分化。希望该工作能够为治疗创伤性神经元损伤和神经元退行性疾病提供新的思路。
[3] Mushtaq, F.; Torlakcik, H.; Vallmajo-Martin, Q.; Siringil, E.; Zhang, J.; Röhrig, C.; Shen, Y.; Yu, Y.; Chen, X. Z.*; Müller, R.; Nelson, B. J.; Pané, S., Magnetoelectric 3D Scaffolds for Enhanced Bone Cell Proliferation. Applied Materials Today, 2019, 16, 290-300. LINK
本文介绍了一种用于诱导细胞增殖的三维磁电支架。利用磁电耦合效应,使支架在外部磁场的作用下产生局部电场,进而刺激支架附近的细胞增殖。该工作进一步证明了磁电效应对调节细胞功能的有利影响,并为未来利用这一效应进行组织工程和再生医学提供了理论依据。
[4] Hoop, M.; Chen, X. Z.*; Ferrari, A.*; Mushtaq, F.; Ghazaryan, G.; Tervoort, T. A.; Poulikakos, D.; Nelson, B. J.; Pané, S.*, Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Scientific Reports, 2017, 7, 4028. LINK
本文研究了压电聚合物聚偏氟乙烯(PVDF)作为无线诱导神经元分化基体的潜力。压电PVDF能够在超声刺激下在其表面产生电荷,诱导PC12类神经细胞再生。超声能够传入生物组织深处,这为开发非侵入性神经再生设备带来了新的思路。
5. 基于铁性纳米材料的新器件
New Devices Based on Ferroic Nanomaterials
作为智能材料,铁磁、铁电、压电、磁电材料由于其优异的性能,在诸多领域具有广泛的应用。我们前期的工作主要集中在磁控微机器人。未来我们会针对传感器、执行器、人-机交互界面、机器人等领域的特殊需求,结合材料合成方法与先进制造工艺,开发基于铁性纳米材料的新器件。
As smart materials, the ferromagnetic, ferroelectric, piezoelectric, and magneto-electric materials possess unique properties and are widely used in various fields. Our early work mainly focuses on the magnetically controlled microrobots. With the special demand in sensors, actuators, human-machine interfaces, and robotics, we will continue to develop the new devices based on these ferroic nanomaterials in the future.
Representative publications:
[1] Sanchis‐Gual, R.; Ye, H.; Ueno, T.; Landers, F. C.; Hertle, L.; Deng, S.; Veciana, A.; Xia, Y.; Franco, C.; Choi, H.; Puigmartí‐Luis, J.; Nelson, B. J.; Chen, X. Z.*; Pané, S.*, 3D Printed Template‐Assisted Casting of Biocompatible Polyvinyl Alcohol‐Based Soft Microswimmers with Tunable Stability. Advanced Functional Materials 2023, 2212952. LINK
本文报道了基于聚乙烯醇磁性水凝胶的稳定性可调的微机器人。
[2] Llacer Wintle, J.; Rivas-Dapena, A.; Chen, X. Z.*; Pellicer, E.; Nelson, B.; Puigmartí-Luis, J.; Pané, S.; Biodegradable Small-Scale Swimmers for Biomedical Applications. Advanced Materials 2021, 2102049. LINK
从生物学的角度来看,所有生物体都将面临衰败和死亡,这应当同样适用于植入式微型器件。因此,微型机器人在完成治疗任务后能否实现生物可降解成为了该技术从实验转化为临床的关键问题。本文综述了生物医用可降解微纳米微机器人的研究进展。
[3] Gervasoni, S.; Terzopoulou, A.; Franco, C.; Veciana, A.; Pedrini, N.; Burri, J.; de Marco, C.; Siringil, E. C.; Chen, X. Z.*; Nelson, B. J.; Puigmartí-Luis, J.; S. Pané., CANDYBOTS: A New Generation of 3D-Printed Sugar-based Transient Small-Scale Robots. Advanced Materials, 2020, 32 (52), e2005652. LINK
糖类普遍存在于食物中,几乎是所有生命形式的主要能量来源之一。得益于其固有的可降解性、可再生性和生物相容性,糖是可降解机器人的很好的备选材料。本文介绍了一种用于糖基复合材料的磁性微机器人的制造方法。
[4] Chen, X. Z.; Jang, B.; Ahmed, D.; Hu, C.; De Marco, C.; Hoop, M.; Mushtaq, F.; Nelson, B. J.; Pane, S., Small-Scale Machines Driven by External Power Sources. Advanced Materials. 2018, 30 (15), 1705061. LINK
微纳米机器人在微创外科手术、靶向治疗、细胞操控、环境监测和水修复等领域显示出巨大的应用潜力。本文综述了基于磁、光、声、电、热各种外场及其组合来操纵微纳机器人的最新进展,重点介绍了微纳机器人的设计和推进机理,并简要的讨论了它们的制备和应用。
[5] Chen, X. Z.; Hoop, M.; Mushtaq, F.; Siringil, E.; Hu C. Z.; Nelson, B. J.; Pané, S., Recent developments in magnetically driven micro- and nanorobots. Applied Materials Today, 2017, 9, 37-48. (Invited Review) LINK
本文综述了磁场驱动纳米机器人的相关进展。
[6] Chen, X. Z.; Shamsudhin, N.; Hoop, M.; Pieters, R.; Siringil, E.; Sakar, M. S.; Nelson, B. J.; Pané, S., Magnetoelectric micromachines with wirelessly controlled navigation and functionality. Materials Horizons, 2016, 3 (2), 113-118. (This work has been showcased in renowned channels such as The Times, Mirror Online, ETH News, Phys.org, etc..) LINK
微生物可以被认为是高度集成的微型器件,其能量主要来源于食物,不仅可以应用于控制其自身的运动,而且可以用来完成生物本身许多的功能(如呼吸、繁殖)。目前,微型机器人集成水平相对较低,而且应用于运动控制和功能触发的能量通常分属不同的来源。本文通过集成磁电材料,开发了一种可以由单一能源(磁能)供能的多功能触发的原型微机器,提出了简化操作系统的高度集成微机器的概念。
[7] Hoop, M.; Shen, Y.; Chen, X. Z.*; Mushtaq, F.; Sakar, M. S.; Petruska, A.; Loessner, M. J.; Nelson, B. J.; Pané, S.*, Magnetically driven silver-coated helical nanorobots for efficient bacterial contact killing. Advanced Functional Materials, 2016, 26 (7), 1063-1069. LINK
多重耐药细菌菌株对传统抗生素疗法的威胁成为了一个重大的世界性健康风险。本文报道了一种利用镀银磁性纳米螺旋微机器人来杀灭细菌的策略。
-
[1] Zhang, Z.; Wu, B.; Wang, Y.; Cai, T.; Ma, M.; You, C.; Liu, C.; Jiang, G.; Hu, Y.; Li, X.; Chen, X. Z.; Song, E.; Cui, J.; Huang, G.; Kiravittaya, S.; Mei, Y., Multilevel design and construction in nanomembrane rolling for three-dimensional angle-sensitive photodetection. Nature Communications 2024, 15 (1), 3066. LINK
[2] Llauradó-Capdevila, G.; Veciana, A.; Guarducci, M. A.; Mayoral, A.; Pons, R.; Hertle, L.; Ye, H.; Mao, M.; Sevim, S.; Rodríguez-San-Miguel, D.; Sorrenti, A.; Jang, B.; Wang, Z.; Chen, X. Z.; Nelson, B. J.; Matheu, R.; Franco, C.; Pané, S.; Puigmartí-Luis, J., Tailored Design of a Water-Based Nanoreactor Technology for Producing Processable Sub-40 Nm 3D COF Nanoparticles at Atmospheric Conditions. Advanced Materials 2024, 36(14), 2306345. LINK
[3] Landers, F. C.; Gantenbein, V.; Hertle, L.; Veciana, A.; Llacer-Wintle, J.; Chen, X. Z.; Ye, H.; Franco, C.; Puigmartí-Luis, J.; Kim, M.; Nelson, B. J.; Pané, S., On-Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines. Advanced Materials 2024, 2310084. LINK
[4] Dutta, S.; Noh, S.; Gual, R. S.; Chen, X. Z.; Pané, S.; Nelson, B. J.; Choi H., Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications. Nano-Micro Letters 2024, 16 (1), 41. LINK
[5] Huang, H.; Yang, S. H.; Ying, Y. L.; Chen, X. Z.*; Puigmartí-Luis, J.; Zhang, L.; Pané, S., 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. Advanced Materials 2024, 36 (1), 2305925. LINK
[6] Mattera, M.; Sorrenti, A.; Perpiñá, L. D. G.; Oestreicher, V.; Sevim, S.; Arteaga, O.; Chen, X. Z.; Pané, S.; Abellán, G.; Puigmartí-Luis, J., “On-The-Fly” Synthesis of Self-Supported LDH Hollow Structures Through Controlled Microfluidic Reaction-Diffusion Conditions. Small 2023, 2307621. LINK
[7] Rahimi, E.; Kim, D.; Offoiach, R.; Sanchis-Gual, R.; Chen, X. Z.; Taheri, P.; Gonzalez-Garcia, Y.; Mol, J. M. C.; Fedrizzi, L.; Pané, S.; Lekka, M., Biodegradation of Oxide Nanoparticles in Apoferritin Protein Media: A Systematic Electrochemical Approach. Advanced Materials Interfaces 2023, 10(33), 2300558. LINK
[8] Ning, S.; Sanchis-Gual, R.; Franco, C.; Wendel-Garcia, P. D.; Ye, H.; Veciana, A.; Tang, Q.; Sevim, S.; Hertle, L.; Llacer-Wintle, J.; Qin, X. H.; Zhu, C. H.; Cai, J.; Chen, X. Z.; Nelson, B. J.; Puigmartí-Luis, J.; Pané, S., Magnetic PiezoBOTs: a microrobotic approach for targeted amyloid protein dissociation. Nanoscale 2023, 15, 14800-14808. LINK
[9] Rahimi, E.; Sanchis‐Gual, R.; Chen, X. Z.; Imani, A.; Gonzalez‐Garcia, Y.; Asselin, E.; Mol, A.; Fedrizzi, L.; Pané, S.; Lekka, M., Challenges and Strategies for Optimizing Corrosion and Biodegradation Stability of Biomedical Micro- and Nanoswimmers: A Review. Advanced Function Materials 2023, 2210345. LINK
[10] Ye, H.; Wang, K.; Zhao, J.; Lu, Q.; Wang, M.; Sun, B.; Shen, Y.; Liu, H.; Chen, X. Z.*; Pané, S.; He, Z.; Sun, J., In situ sprayed nanovaccine suppressing exosomal PD-L1 by Golgi apparatus destruction for post-surgical melanoma immunotherapy. ACS Nano 2023, 17 (11), 10637–10650. LINK
[11] Vukomanović, M.; Gazvoda, L.; Kurtjak, M.; Maček‐Kržmanc, M.; Spreitzer, M.; Tang, Q.; Wu, J.; Ye, H.; Chen, X. Z.; Mattera, M.; Puigmartí‐Luis, J.; Pane, S. V., Filler‐Enhanced Piezoelectricity of Poly‐L‐Lactide and Its Use as a Functional Ultrasound‐Activated Biomaterial. Small 2023, 33(44), 2301981. LINK
[12] Llacer-Wintle, J.; Renz, J.; Hertle, L.; Veciana, A.; Arx, D. v.; Wu, J.; Vukomanovic, M.; Puigmartí-Luis, J.; Nelson, B. J.; Chen, X. Z.*; Pané, S.*, The magnetopyroelectric effect: Heat-mediated magnetoelectricity in magnetic nanoparticle-ferroelectric polymer composites. Materials Horizons 2023, 10, 2627-2637. LINK
[13] Kim, D.; Kim, M.; Reidt, S.; Han, H.; Baghizadeh, A.; Zeng, P.; Choi, H.; Puigmartí-Luis, J.; Trassin, M.; Nelson, B. J.; Chen, X. Z.*; Pané, S.*, Shape-memory effect in twisted ferroic nanocomposites. Nature Communications 2023, 14, 750. LINK
[14] Sanchis‐Gual, R.; Ye, H.; Ueno, T.; Landers, F. C.; Hertle, L.; Deng, S.; Veciana, A.; Xia, Y.; Franco, C.; Choi, H.; Puigmartí‐Luis, J.; Nelson, B. J.; Chen, X. Z.*; Pané, S.*, 3D Printed Template‐Assisted Casting of Biocompatible Polyvinyl Alcohol‐Based Soft Microswimmers with Tunable Stability. Advanced Functional Materials 2023, 2212952. LINK
[15] Kim, M.; Kim, D.; Aktas, B.; Choi, H.; Puigmartí‐Luis, J.; Nelson, B. J.; Pané, S.*; Chen, X. Z.*, Strain‐Sensitive Flexible Magnetoelectric Ceramic Nanocomposites. Advanced Materials Technologies 2023, 8(6), 2202097. LINK
[16] Tang, Q.; Wu, J.; Chen, X. Z.; Sanchis-Gual, R.; Veciana, A.; Franco, C.; Kim, D.; Surin, I.; Pérez-Ramírez, J.; Mattera, M.; Terzopoulou, A.; Qin, N.; Vukomanovic, M.; Nelson, B. J.; Puigmartí-Luis, J.; Pané, S., Tuning oxygen vacancies in Bi4Ti3O12 nanosheets to boost piezo-photocatalytic activity. Nano Energy 2023, 108, 108202. LINK
[17] Song, H.; Kim, D.-i.; Abbasi, S. A.; Latifi Gharamaleki, N.; Kim, E.; Jin, C.; Kim, S.; Hwang, J.; Kim, J.-y.; Chen, X. Z.; Nelson, B.; Pané, S.; Choi, H., Multi-target Cell Therapy Using a Magnetoelectric Microscale Biorobot for Targeted Delivery and Selective Differentiation of SH-SY5Y Cells via Magnetically Driven Cell Stamping. Materials Horizons 2022, 9 (12), 3031-3038. LINK
[18] Wu, J.; Folio, D.; Zhu, J.; Jang, B.; Chen, X. Z.; Feng, J.; Gambardella, P.; Sort, J.; Puigmartí-Luis, J.; Ergeneman, O.; Ferreira, A.; Pané, S., Motion Analysis and Real‐Time Trajectory Prediction of Magnetically Steerable Catalytic Janus Micromotors. Advanced Intelligent Systems 2022, 4 (11), 2200192. LINK
[19] de la Asuncion-Nadal, V.; Franco, C.; Veciana, A.; Ning, S.; Terzopoulou, A.; Sevim, S.; Chen, X. Z.; Gong; Cai, J.; Wendel-Garcia, P. D.; Jurado-Sanchez, B.; Escarpa, A.; Puigmarti-Luis, J.; Pane, S., MoSBOTs: Magnetically Driven Biotemplated MoS2 -Based Microrobots for Biomedical Applications. Small 2022, 18 (33), 2203821. LINK
[20] Tang, Q.; Wu, J.; Kim, D.; Franco, C.; Terzopoulou, A.; Veciana, A.; Puigmartí‐Luis, J.; Chen, X. Z.; Nelson, B. J.; Pané, S., Enhanced Piezocatalytic Performance of BaTiO3 Nanosheets with Highly Exposed {001} Facets. Advacned Functional Materials 2022, 2202180. LINK
[21] Kim, D.; Efe, I.; Torlakcik, H.; Terzopoulou, A.; Picazo, A. V.; Siringil, E.; Mushtaq, F.; Franco, C.; von Arx, D.; Sevim, S.; Puigmartí-Luis, J.; Nelson, B.; Spaldin, N. A.; Gattinoni, C.*; Chen, X.-Z.*; Pané, S.*, Magnetoelectric effect in hydrogen harvesting: magnetic field as a trigger of catalytic reactions. Advanced Materials 2022, 34(19), 2110612. LINK
[22] Lu, Y.; Wu, C.; Yang, Y.; Chen, X. Z.; Ge, F.; Wang, J.; Deng, J., Inhibition of tumor recurrence and metastasis via a surgical tumor-derived personalized hydrogel vaccine. Biomaterials Science 2022, 10 (5), 1352-1363. LINK
[23] Mushtaq, F.; Chen, X. Z.; Veciana, A.; Hoop, M.; Nelson, B. J.; Pané, S., Magnetoelectric reduction of chromium(VI) to chromium(III). Applied Materials Today, 2022, 26, 101339. LINK
[24] Terzopoulou, A.; Palacios‐Corella, M.; Franco, C.; Sevim, S.; Dysli, T.; Mushtaq, F.; Romero‐Angel, M.; Martí‐Gastaldo, C.; Gong, D.; Cai, J.; Chen, X. Z.; Pumera, M.; deMello, A. J.; Nelson, B. J.; Pané, S.; Puigmartí‐Luis, J., Biotemplating of Metal–Organic Framework Nanocrystals for Applications in Small‐Scale Robotics. Advanced Functional Materials, 2021, 32 (13), 2107421. LINK
[25] Mattmann, M.; De Marco, C.; Briatico, F.; Tagliabue, S.; Colusso, A.; Chen, X. Z.; Lussi, J.; Chautems, S; Pané, S.; Nelson, B.; Thermoset Shape Memory Polymer Variable Stiffness 4D Robotic Catheters, Advanced Science 2021, 9, 2103277. LINK
[26] Pané, S.; Wendel-Garcia, P.; Belce, Y.; Chen, X.-Z.; Puigmartí-Luis, J., Powering and Fabrication of Small-Scale Robotics Systems. Current Robotics Reports 2021, 427-440.. LINK
[27] Llacer Wintle, J.; Rivas-Dapena, A.; Chen, X. Z.*; Pellicer, E.; Nelson, B.; Puigmartí-Luis, J.; Pané, S.; Biodegradable Small-Scale Swimmers for Biomedical Applications. Advanced Materials 2021, 2102049. LINK
[28] Rahimi, E.; Offoiach, R.; Deng, S.; Chen, X. Z.; Pané, S.; Fedrizzi, L.; Lekka, M., Corrosion mechanisms of magnetic microrobotic platforms in protein media. Applied Materials Today 2021, 24, 101135. LINK
[29] Kim, D.; Rossell, M. D.; Campanini, M.; Erni, R.; Puigmartí-Luis, J.; Chen, X. Z.*; Pané, S.; Magnetoelectric coupling in micropatterned BaTiO3/CoFe2O4 epitaxial thin film structures: augmentation and site-dependency. Applied Physics Letters 2021,119, 012901. LINK
[30] Wu, J.; Jang, B.; Harduf, Y.; Lehner, T.; Avci, B.; Chen, X. Z.; Puigmartí-Luis, J.; Ergeneman, O.; Nelson, B.J.; Or, Y.; Pané, S., Helical Klinotactic Locomotion of Two-Link Nanoswimmers with Dual-Function Drug-Loaded Soft Polysaccharide Hinges. Advanced Science 2021, 8 (8), 2004458. LINK
[31] Gervasoni, S.; Terzopoulou, A.; Franco, C.; Veciana, A.; Pedrini, N.; Burri, J.; de Marco, C.; Siringil, E. C.; Chen, X. Z.*; Nelson, B. J.; Puigmartí-Luis, J.; S. Pané., CANDYBOTS: A New Generation of 3D-Printed Sugar-based Transient Small-Scale Robots. Advanced Materials, 2020, 32 (52), e2005652. LINK
[32] Terzopoulou, A.; Nicolas J.; Chen, X. Z.; Nelson, B. J.; Pané, S.; Puigmartí-Luis, J., FOCUS REVIEW – Metal-Organic Frameworks in Motion. Chemical Reviews 2020, 120 (20), 11175-11193. LINK
[33] Terzopoulou, A.; Wang, X.; Chen, X. Z.*; Palacios-Corella, M.; Pujante, C.; Herrero-Martín, J.; Qin, X.-H.; Sort, J.; deMello, A. J.; Nelson, B. J.; Puigmartí-Luis, J.; Pané, S., Biodegradable MOFBOTs. Advanced Healthcare Materials, 2020, 9 (20), e2001031. LINK
[34] Mushtaq, F.; Chen, X. Z.; Torlakcik, H.; Nelson, B. J.; Pané, S., Magnetoelectric Photocatalytic Nanoparticles Scavenging Energy from Three Sources for Enhanced Catalytic Degradation. Nano Research, 2020, 13 (8), 2183-2191. LINK
[35] Sevim, S.; Franco, C.; Chen, X. Z.; Sorrenti, A.; Rodríguez-San-Miguel, D.; Pané, S.; deMello, A. J.; Puigmartí-Luis, J., SERS Barcode Libraries: A Microfluidic Approach. Advanced Science 2020, 1903172. LINK
[36] Fernández-Barcia, M.; Jang, B.; Alcântara, C. C. J.; Wolff, U.; Gebert, A.; Uhlemann, M.; Chen, X. Z.; Puigmartí-Luis, J.; Sort, J.; Pellicer, E.; Pané, S., Exploiting electrolyte confinement effects for the electrosynthesis of two-engine micromachines. Applied Materials Today 2020, 19, 100629. LINK
[37] Dong, M.†; Wang, X. †; Chen, X. Z. †*; Mushtaq, F.; Deng, S.; Zhu, C.; Torlakcik, H.; Terzopoulou, A.; Qin, X.-H.; Xiao, X.; Puigmarti-Luis, J.; Choi, H.; Pêgo A. P.; Shen, Q.-D.*; Nelson, B. J.; Pané, S.*, 3D-printed Biodegradable Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron-like Cells. Advanced Functional Materials, 2020, 1910323. LINK
[38] Zhou, Z.; Zhang, Q.; Yang, R.; Wu, H.; Zhang, M.; Qian, C.; Chen, X. Z.; Sun, M., ATP-Charged Nanoclusters Enable Intracellular Protein Delivery and Activity Modulation for Cancer Theranostics. iScience (cell press) 2020, 100872. LINK
[39] Nicolenco, A.; Gómez, A.; Chen, X. Z.; Menéndez, E.; Fornell, J.; Pané, S.; Pellicer, E.; Sort, J., Strain gradient mediated magnetoelectricity in Fe-Ga/P(VDF-TrFE) multiferroic bilayers integrated on silicon. Applied Materials Today 2020, 19, 100579. LINK
[40] Cui, J.; Huang, T.-Y.; Luo, Z.; Testa, P.; Gu, H.; Chen, X. Z.; Nelson, B. J.; Heyderman, L. J., Nanomagnetic Encoding of Shape-morphing Micromachines. Nature, 2019, 575 (7781), 164-168. LINK
[41] Mushtaq, F.*; Chen, X. Z.*; Staufert, S.; Torlakcik, H.; Wang, X.; Hoop, M.; Gerber, A.; Li, X.; Cai, J.; Nelson, B. J.; Pané, S., On-the-fly catalytic degradation of organic pollutants using magneto-photoresponsive bacteria-templated microcleaners. Journal of Materials Chemistry A, 2019, 7 (43), 24847-24856. LINK
[42] Terzopoulou, A.; Hoop, M.; Chen, X. Z.*; Hirt, A. M.; Charilaou, M.; Shen, Y.; Mushtaq, F.; Pérez del Pino, A.; Logofatu, C.; Simonelli, L.; deMello, A. J.; Doonan, C. J.; Sort. J., Nelson, B. J.; Pané, S.*; Puigmartí-Luis, J.*, Mineralization-inspired synthesis of magnetic zeolitic imidazole frameworks. Angewandte Chemie International Edition, 2019, 58, 13550-13555. LINK
[43] Chen, X. Z.; Liu, J.-H.; Dong, M.; Müller, L.; Chatzipirpiridis, G.; Hu, C.; Terzopoulou, A.; Torlakcik, H.; Wang, X.; Mushtaq, F.; Puigmartí-Luis, J.; Shen, Q.-D.; Nelson, B. J.; Pané, S., Magnetically Driven Piezoelectric Soft Microswimmers for Neuron-like Cell Delivery and Neuronal Differentiation. Materials Horizons, 2019, 6, 1512-1516. LINK
[44] Mushtaq, F.; Torlakcik, H.; Vallmajo-Martin, Q.; Siringil, E.; Zhang, J.; Röhrig, C.; Shen, Y.; Yu, Y.; Chen, X. Z.*; Müller, R.; Nelson, B. J.; Pané, S., Magnetoelectric 3D Scaffolds for Enhanced Bone Cell Proliferation. Applied Materials Today, 2019, 16, 290-300. LINK
[45] Mushtaq, F.*; Chen, X. Z.*; Torlakcik, H.; Steuer, C.; Hoop, M.; Siringil, E. C.; Marti, X.; Limburg, G.; Stipp, P.; Nelson, B. J.; Pané, S.*, Magnetoelectrically driven catalytic degradation of organics. Advanced Materials, 2019, 31, 1901378. LINK
[46] Mushtaq, F.*; Torlakcik, H.; Hoop, M.; Jang, B.; Carlson, F.; Grunow, T.; Läubli, N.; Ferreira, A.; Chen, X. Z.*; Nelson, B. J.; Pané, S., Motile Piezoelectric Nanoeels for Targeted Drug Delivery. Advanced Functional Materials, 2019, 29, 1808135. LINK
[47] de Marco, C.; Alcântara, C. C. J.; Kim, S.; Briatico, F.; Kadioglu, A.; de Bernardis, G.; Chen, X. Z.; Marano, C.; Nelson, B. J.; Pané, S., Indirect 3D and 4D Printing of Soft Robotic Microstructures. Advanced Materials Technologies, 2019, 1900332. LINK
[48] Bernasconi, R.; Carrara, E.; Hoop, M.; Mushtaq, F.; Chen, X. Z.; Nelson, B. J.; Pané, S.; Credi, C.; Levi, M.; Magagnin, L., Magnetically Navigable 3D Printed Multifunctional Microdevices for Environmental Applications. Additive Manufacturing, 2019, 28, 127-135. LINK
[49] Wang, X.; Chen, X. Z.; Alcantara, C.; Sevim, S.; Hoop, M.; Terzopoulou, A.; de Marco, C.; Hu, C.; deMello, A. J.; Falcaro, P.; Furukawa, S.; Nelson, B. J.; Puigmartí-Luis, J.; Pané, S., MOFBOTS: Metal–Organic Framework-based Biomedical Microrobots. Advanced Materials, 2019, 1901592. LINK
[50] Sevim, S.; Franco, C.; Liu, H.; Roussel, H.; Rapenne, L.; Rubio-Zuazo, J.; Chen, X. Z.; Pané, S.; Muñoz-Rojas, D.; deMello, A. J.; Puigmartí-Luis, J., In-Flow MOF Lithography. Advanced Materials Technologies 2019, 1800666. LINK
[51] Pané, S.; Puigmartí-Luis, J.; Bergeles, C.; Chen, X. Z.; Pellicer, E.; Sort, J.; Počepcová, V; Ferreira, A.; Nelson, B. J., Imaging Technologies for Biomedical Micro- and Nano-swimmers. Advanced Materials Technologies, 2019, 1800575. LINK
[52] Mushtaq, F.*; Chen, X. Z.*; Hoop, M.; Torlakcik, H.; Pellicer, E.; Sort, J.; Gattinoni, C.; Nelson, B. J.; Pané, S., Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation. iScience (cell press) 2018, 4, 236-246. LINK
[53] Chen, X. Z.; Jang, B.; Ahmed, D.; Hu, C.; De Marco, C.; Hoop, M.; Mushtaq, F.; Nelson, B. J.; Pane, S., Small-Scale Machines Driven by External Power Sources. Advanced Materials. 2018, 30 (15), 1705061. LINK
[54] Wang, X.; Qin, X.-H.; Hu, C.; Terzopoulou, A.; Chen, X. Z.; Huang, T.-Y.; Maniura-Weber, K.; Pané, S.; Nelson, B. J., 3D Printed Enzymatically Biodegradable Soft Helical Microswimmers. Advanced Functional Materials, 2018, 28, 1804107. LINK
[55] Wang, X.; Hu, C.; Schurz, L.; De Marco, C.; Chen, X. Z.; Pane, S.; Nelson, B. J., Surface Chemistry-Mediated Control of Individual Magnetic Helical Microswimmers in a Swarm. ACS Nano 2018, 12, 6210–6217. LINK
[56] Bernasconi, R.; Cuneo, F.; Carrara, E.; Chatzipirpiridis, G.; Hoop, M.; Chen, X. Z.; Nelson, B. J.; Pané, S.; Credi, C.; Levi, M.; Magagnin, L., Hard-magnetic cell microscaffolds from electroless coated 3D printed architectures. Materials Horizons, 2018, 5, 699-707. LINK
[57] Hoop, M.; Ribeiro, A. S.; Rösch, D.; Weinand, P.; Mendes, N.; Mushtaq, F.; Chen, X. Z.; Shen, Y.; Pujante, C. F.; Puigmartí-Luis, J.; Paredes, J.; Nelson, B. J.; Pêgo, A. P.; Pané, S., Mobile Magnetic Nanocatalysts for Bioorthogonal Targeted Cancer Therapy. Advanced Functional Materials. 2018, 28, 1705920. LINK
[58] Hoop, M.; Walde, C. F.; Riccò, R.; Mushtaq, F.; Terzopoulou, A.; Chen, X. Z.; deMello, A. J.; Doonan, C. J.; Falcaro, P.; Nelson, B. J.; Puigmartí-Luis, J.; Pané, S., Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today 2018, 11, 13-21. LINK
[59] Chen, X. Z.; Hoop, M.; Mushtaq, F.; Siringil, E.; Hu C. Z.; Nelson, B. J.; Pané, S., Recent developments in magnetically driven micro- and nanorobots. Applied Materials Today, 2017, 9, 37-48. (Invited Review) LINK
[60] Hoop, M.; Chen, X. Z.*; Ferrari, A.*; Mushtaq, F.; Ghazaryan, G.; Tervoort, T. A.; Poulikakos, D.; Nelson, B. J.; Pané, S.*, Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Scientific Reports, 2017, 7, 4028. LINK
[61] Chen, X. Z.; Hoop, M.; Shamsudhin, N.; Huang, T.; Özkale, B.; Li, Q.; Siringil, E.; Mushtaq, F.; Tizio, L. D.; Nelson, B. J.; Pané, S., Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling and magnetically-assisted targeted drug delivery. Advanced Materials 2017, 29, 1605458. (This work has been reported in Advanced Science News, etc..) LINK
[62] Hu, C.; Aeschlimann, F.; Chatzipirpiridis, G.; Pokki, J.; Chen, X. Z.; Puigmarti-Luis, J.; Nelson, B. J.; Pané, S., Spatiotemporally controlled electrodeposition of magnetically driven micromachines based on the inverse opal architecture. Electrochemistry Communications, 2017, 81, 97-101. LINK
[63] Chen, X. Z.; Shamsudhin, N.; Hoop, M.; Pieters, R.; Siringil, E.; Sakar, M. S.; Nelson, B. J.; Pané, S., Magnetoelectric micromachines with wirelessly controlled navigation and functionality. Materials Horizons, 2016, 3 (2), 113-118. (This work has been showcased in renowned channels such as The Times, Mirror Online, ETH News, Phys.org, etc..) LINK
[64] Mushtaq, F.; Asani, A.; Hoop, M.; Chen, X. Z.*; Ahmed D., Nelson, B. J.; Pané, S.*, Highly efficient coaxial tio2-ptpd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies. Advanced Functional Materials, 2016, 26 (38), 6995-7002. LINK
[65] Hoop, M.; Mushtaq, F.; Hurter, C.; Chen, X. Z.*; Nelson, B. J.; Pané, S.*, A smart multifunctional drug delivery nanoplatform for targeting cancer cells. Nanoscale, 2016, 8 (25), 12723-12728. (This article is part of themed collection: 2016 Nanoscale HOT Article Collection.) LINK
[66] Hoop, M.; Shen, Y.; Chen, X. Z.*; Mushtaq, F.; Sakar, M. S.; Petruska, A.; Loessner, M. J.; Nelson, B. J.; Pané, S.*, Magnetically driven silver-coated helical nanorobots for efficient bacterial contact killing. Advanced Functional Materials, 2016, 26 (7), 1063-1069. LINK
[67] Jang, B.; Wang, W.; Wiget, S.; Petruska, A. J.; Chen, X. Z.; Hu, C.; Hong, A.; Folio, D.; Ferreira, A.; Pané, S.; Nelson, B. J., Catalytic locomotion of core−shell nanowire motors. ACS Nano, 2016, 10 (11), 9983-9991. LINK
[68] Jang, B.; Chen, X. Z.*; Siegfried, R.; Montero Montero, J. M.; Özkale, B.; Nielsch, K.; Nelson, B. J.; Pané, S., Silicon-supported aluminum oxide membranes with ultrahigh aspect ratio nanopores. RSC Advances 2015, 5 (114), 94283-94289. LINK
[69] Mushtaq, F.; Guerrero, M.; Sakar, M. S.; Hoop, M.; Lindo, A.; Sort, J.; Chen, X. Z.; Nelson, B. J.; Pellicer, E.; Pané, S., Magnetically driven Bi2O3/BiOCl-based hybrid microrobots for photocatalytic water remediation. Journal of Materials Chemistry A 2015, 3 (47), 23670-23676. LINK
[70] Ozkale, B.; Shamsudhin, N.; Chatzipirpiridis, G.; Hoop, M.; Gramm, F.; Chen, X. Z.; Marti, X.; Sort, J.; Pellicer E.; Pane S., Multisegmented FeCo/Cu nanowires: electrosynthesis, characterization, and magnetic control of biomolecule desorption. ACS Applied Materials & Interfaces 2015, 7(13): 7389-7396. LINK
[71] Chen, X.; Tang, X.; Chen, X. Z.; Chen, Y. L.; Guo X.; Ge, H. X.; Shen, Q. D., Nonvolatile data storage using mechanical force-induced polarization switching in ferroelectric polymer. Applied Physics Letters 2015, 106 (4), 042903. LINK
[72] Chen, X. Z.; Chen, X.; Guo, X.; Cui, Y. S.; Shen, Q. D.; Ge, H. X., Ordered arrays of defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption. Nanoscale 2014, 6 (22), 13945-13951. LINK
[73] Jang, B.; Pellicer, E.; Guerrero, M.; Chen, X. Z.; Choi, H.; Nelson, B. J.; Sort, J.; Pané, S., Fabrication of segmented Au/Co/Au nanowires: insights in the quality of co/au junctions. ACS Applied Materials & Interfaces 2014, 6 (16), 14583-14589. LINK
[74] Chen, X. Z.; Li, X. Y.; Qian, X. S.; Wu, S.; Lin, M. R.; Shen, Q. D.; Zhang, Q. M., A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polymer 2013, 54 (20), 5299-5302. LINK
[75] Chen, X. Z.; Cheng, Z. X.; Liu L.; Yang X. D.; Shen, Q. D.; Hu W. B.; Li, H. T., Evolution of nano-polar phases, interfaces and increased dielectric energy storage capacity in photoinitiated cross-linked Poly(vinylidene fluoride)-based copolymers. Colloid and Polymer Science 2013, 291 (8), 1989-1997. LINK
[76] Chen, X. Z.; Li, Q.; Chen, X.; Guo, X.; Ge, H. X.; Liu, Y.; Shen, Q. D., Nano-imprinted ferroelectric polymer nanodot arrays for high density data storage. Advanced Functional Materials 2013, 23 (24), 3124-3129. LINK
[77] Chen, X. Z.; Li, X. Y.; Qian, X. S.; Wu, S.; Lu, S. G.; Gu, H. M.; Lin, M. R.; Shen, Q. D.; Zhang, Q. M., A polymer blend approach to tailor the ferroelectric responses in P(VDF-TrFE) based copolymers Polymer. Polymer 2013, 54, 2373-2381. LINK
[78] Li, X. Y.; Lu, S. G.; Chen, X. Z.; Gu, H. M.; Qian, X. S.; Zhang, Q. M., Pyroelectric and electrocaloric materials. Journal of Materials Chemistry C 2013, 1 (1), 23-37. LINK
[79] Wu, S.; Shao, M.; Burlingame, Q.; Chen, X. Z.; Lin, M. R.; Xiao, K.; Zhang, Q. M., A high-K ferroelectric relaxor terpolymer as a gate dielectric for organic thin film transistors. Applied Physics Letters 2013, 102 (1), 013301. LINK
[80] Chen, X.; Liu, L.; Liu, S. Z.; Cui, Y. S.; Chen, X. Z.; Ge, H. X.; Shen, Q. D., P(VDF-TrFE-CFE) terpolymer thin-film for high performance nonvolatile memory. Applied Physics Letters 2013, 102 (6), 063103. LINK
[81] Chen, X. Z.; Qian, X. S.; Li, X. Y.; Lu, S. G.; Gu, H. M.; Lin, M. R.; Shen, Q. D.; Zhang, Q. M., Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based terpolymer/copolymer blends. Applied Physics Letters 2012, 100 (22), 222902. LINK
[82] Erste, A.; Chen, X. Z.; Cheng, Z. X.; Shen, Q. D.; Bobnar, V., Structural and dielectric properties of poly(vinylidene fluoride)-based terpolymer/copolymer blends developed on aluminum foil. Journal of Applied Physics 2012, 112 (5), 053505. LINK
[83] Erste, A.; Chen, X. Z.; Jia, C. L.; Shen, Q. D.; Bobnar, V., Dielectric investigations of relaxor reduced poly(vinylidene fluoride-trifluoroethylene) copolymer in DC bias electric field. Ferroelectrics 2012, 427, 157-162. LINK
[84] Li, X. Y.; Qian, X. S.; Gu, H. M.; Chen, X. Z.; Lu, S. G.; Lin, M. R.; Bateman, F.; Zhang, Q. M., Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Applied Physics Letters 2012, 101 (13), 132903. LINK
[85] Chen, X. Z.; Li, Z. W.; Cheng, Z. X.; Zhang, J. Z.; Shen, Q. D.; Ge, H. X.; Li, H. T., Greatly enhanced energy density and patterned films induced by photo cross-linking of poly(vinylidene fluoride-chlorotrifluoroethylene). Macromolecular Rapid Communications 2011, 32 (1), 94-99. LINK
[86] Bobnar, V.; Erste, A.; Chen, X. Z.; Jia, C. L.; Shen, Q. D., Influence of dc bias electric field on Vogel-Fulcher dynamics in relaxor ferroelectrics. Physical Review B 2011, 83 (13), 132105. LINK
[87] Bobnar, V.; Erste, A.; Chen, X. Z.; Shen, Q. D., Glassy dielectric processes in reduced poly(vinylidene fluoride-trifluoroethylene) copolymer system. Ferroelectrics 2011, 419, 59-65. LINK
[88] Li, H. T.; Xia, Y. D.; Xu, H. N.; Liu, L. F.; Li, X. F.; Tang, Z. J.; Chen, X. Z.; Li, A. D.; Yin, J.; Liu, Z. G., Redox-controlled memristive switching in the junctions employing Ti reactive electrodes. AIP Advances 2011, 1 (3), 032141. LINK
[89] Erste, A.; Filipic, C.; Levstik, A.; Bobnar, V.; Chen, X. Z.; Jia, C. L.; Shen, Q. D., Contributions of distinctive dynamic processes to dielectric response of a relaxorlike reduced poly(vinylidene fluoride-trifluoroethylene) copolymer. Physical Review B 2010, 81 (21), 214103. LINK
-
[1] Chen, X. Z., Magnetic controlled micro-robots based on magneto-electric coupling materials, The First Youth Academic Symposium on Ferroelectric and Sensing Materials, Xi'an, China, April 20-21, 2024 (Invited Talk)
[2] Chen, X. Z., Magnetic controlled micro-robots based on magneto-electric coupling materials, 8th National Congress of Magnetic Materials and Devices, Hangzhou, China, April 12-14, 2024 (Invited Talk, Session Co-Chair)
[3] Chen, X. Z., Flexible thin film ferroic heterostructures with a large recoverable deformation, The 15th China and Japan Symposium on Ferroelectric Materials and Their Applications, Tai'an, China, August 12-15, 2023 (Invited Talk)
[4] Chen, X. Z., Lecture: Microrobots: from functionalization toward clinical application, 2nd Asian Advanced Materials Summit & Young Materials Scholars Training Program, Yiwu, China, August 3-6, 2023 (Invited Talk)
[5] Chen, X. Z., Marriage of piezoelectric materials and magnetically driven microrobots: biomedical applications, The 12th International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale IEEE) (3M Nano), Chengdu, China, July 31-August 04, 2023 (Invited Talk)
[6] Chen, X. Z., Piezoelectric and magnetoelectric catalysis: emerging fields yet to be explored, Cluster Meeting 2023, Prague, Czech Republic, June 18-23, 2023 (Invited Talk)
[7] Chen, X. Z., Electrically Sensitive Soft Ceramics for Potential Small-Scale Actuating applications, I18th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS 2023), Jeju, Korea, May 14, 2023 (Invited Talk)
[8] Chen, X. Z.; Kim, D.; Kim, M.; Nelson B. J.; Pané, S, Flexible thin film ferroic microstructures with a large recoverable deformation, 15th International Meeting on Ferroelectricity, Tel Aviv, 2023 (Oral)
[9] Llacer, J.; Renz, J.; Hertle, L.; Veciana, A.; von Arx, D.; Wu, J.; Vukomanovic, M.; Chen, X. Z.; Puigmartí-Luis, J.; Nelson, B. J.; Pané, S, Heat-mediated magnetoelectric effect in a magnetic nanoparticle - pyroelectric polymer composite, 15th International Meeting on Ferroelectricity, Tel Aviv, 2023 (Oral)
[10] Chen, X. Z.; Hoop, M.; Mushtaq, F., Wang, X. P.; Dong, M.; Nelson, B. J.; Pané, S, Piezoelectric materials-based magnetically driven microrobots for targeted cell therapy, 15th International Meeting on Ferroelectricity, Tel Aviv, 2023 (Oral)
[11] Chen, X. Z., Magnetoelectric microrobots for targeted cell therapy, Intelligent Medicine Forum, Nanjing, China, March 18, 2023 (Invited Talk)
[12] Chen, X. Z., Hybrid magnetoelectric microrobots for targeted therapeutics, Nanjing Forestory University, May 07, 2022 (Invited Talk)
[13] Kim, D; Kim, M; Chen, X. Z.; Nelson, B. J.; Pané, S., Electrically controllable kirigami structures in free-standing ferroelectric thin films. 2022 MRS Spring Meeting, Honolulu, United States, 2022 (Oral)
[14] Chen, X. Z., Anticancer therapies using magnetoelectric materials. BeMAGIC Winter School: Magnetoelectricy in biomedicine: healthcare for the 21st century, Zurich, Switzerland, 2021. (Invited Talk)
[15] Chen, X. Z., Mushtaq, F., Torlakçik H., Terzopoulou A., Kim D., Nelson B., Pané S., Piezoelectric and Magnetoelectric Materials for Biomedical Applications. 10th International Forum on Advanced Material Science and Technology and The first Materials Conference in Guangdong-Hong Kong-Macao Great Bay Area, Shenzhen, China, 2019. (Invited Talk)
[16] Chen, X. Z., Mushtaq, F., Torlakçik H., Nelson B., Pané S., Piezoelectric and Magnetoelectric Microrobots for Targeted Neuron-like Cell Delivery and Neuronal Differentiation. 7th International Symposium on Integrated Functionalities Conference 2019. Dublin, Ireland, 2019 (Oral).
[17] Chen, X. Z., Integration of ferroelectric materials in microdevices for biomedical application. IEEE International Conferences on Manipulation, Manufacturing, and Measurement at the Nanoscale (IEEE-3M Nano 2019), Zhenjiang, China, 2019 (Invited Talk, Special Session Organizer).
[18] Chen, X. Z., Mushtaq, F., Torlakçik H., Nelson B., Pané S.*, Magnetically Driven Ferroelectric Micromachines for Delivery and Remote Electrical Stimulation of Neuronal Cells. 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC 2019), Berlin, Germany, 2019. (Invited Talk)
[19] Kim, D; Chen, X. Z.; Nelson, B. J.; Pané, S., Enhanced Magnetoelectric Coupling from Reduced Substrate-Clamping effect. IEEE International Symposium on Applications of Ferroelectrics (IEEE-ISAF 2019), Lausanne, Switzerland, 2019. (Poster)
[20] Chen, X. Z.; Mushtaq, F.; Torlakcik, H.; Terzopoulou, A.; Kim, D; Nelson, B. J.; Pané, S., Hybrid magnetoelectric microrobots for targeted therapeutics. IEEE International Symposium on Applications of Ferroelectrics (IEEE-ISAF 2019), Lausanne, Switzerland, 2019. (Oral, Session Co-Chair)
[21] Chen, X. Z., Microdevices based on piezoelectric materials for wireless cell delivery and differentiation. 17th National Congress on Dielectric Physics, Materials, and Applications, Guangzhou, China, 2018 (Invited Talk, Session Chair).
[22] Chen, X. Z., Piezoelectric swimmers for cell delivery and wireless stimulation. IEEE International Conferences on Cyborg and Bionic Systems (IEEE-CBS 2018), Shenzhen, China, 2018 (Invited Talk).
[23] Chen, X. Z., Integration of ferroelectric materials in microdevices for cell stimulation. IEEE International Conferences on Manipulation, Manufacturing, and Measurement at the Nanoscale (IEEE-3M Nano 2018), Hangzhou, China, 2018 (Invited Talk, Special Session Organizer).
[24] Grundbacher, R.; Ju. R; Eltes F.; Chen, X. Z.; HfZrO2 Deposited by ALD using TEMAH and ZrCMMM Precursors. 18th International Conference on Atomic Layer Deposition, Incheon, South Korea, 2018 (Poster)
[25] Chen, X. Z.; Magnetically driven microdevices: From masterial development to applications in environmental small-scale robotics . International Conference on Manipulation, Automation and Robotics at Small Scales (IEEE-MARSS 2018), Nagoya, Japan, 2018. (Invited Talk)
[26] Chen, X. Z.; Hoop, M.; Mushtaq, F.; Torlakcik, H.; Liu J. H.; Shen, Q.D.; Nelson, B. J.; Pané, S., Microdevices based on piezoelectric polymers for wireless cell stimulation. IEEE International Symposium on Applications of Ferroelectrics (IEEE-ISAF 2018), Hiroshima, Japan, 2018. (Oral)
[27] Wang, X.; Qin, X. H.; Hu, C.; Chen, X. Z.; Pané, S.; Maniura-Weber, K.; Nelson, B. J., Synthesis of biodegradable microrobots for biomedical applications, Hamlyn Symposium on Medical Robotics, London, United Kingdom, 2018 (Poster)
[28] Chen, X. Z.; Hoop M.; Mushtaq, F.; Nelson, B. J.; Pané S., Magnetoelectric Microrobots for Biomedical Applications. 2017 MRS Fall Meeting, Boston, United States, 2017 (Oral)
[29] Chen, X. Z., Integration of Ferroelectric Materials In Micro- And Nanorobots For Chemical And Biomedical Application. IEEE International Conferences on Manipulation, Manufacturing, and Measurement at the Nanoscale (IEEE-3M Nano 2017), Shanghai, China, 2017 (Invited Talk, Special Session Organizer).
[30] Chen, X. Z.; Hoop, M.; Mushtaq, F.; Nelson, B. J.; Pané, S., Piezoelectric Scaffolds for Wireless Cell Stimulation. European Materials Research Society Meeting (E-MRS 2017), Warsaw, Poland 2017. (Oral)
[31] Chen, X. Z.; Hoop, M.; Mushtaq, F.; Nelson, B. J.; Pané, S., Magnetoelectric Micro- and Nanorobots. International Union of Materials Research Societies-International Conference on Electronic Materials (IUMRS-ICEM 2016), Singapore, 2016. (Oral)
[32] Chen, X. Z.; Hoop, M.; Chatzipirpiridis, G.; Mushtaq, F.; Ferrari, A.; Poulikakos, D.; Nelson, B. J.; Pané, S., Piezoelectric polymers for nerve tissue engineering applications. Nature Conferences on Tissue Engineering and Regenerative Medicine, Guangzhou, China, 2016 (Poster).
[33] Mushtaq, F.; Asani A.; Chen, X. Z.; Hoop M.; Ahmed D.; Nelson, B. J.; Pané S., Coaxial Tubular TiO2-PtPd Nanomachines for Efficient Water Purification under Sunlight. 2016 MRS Spring Meeting, Phoenix, 2016 (Oral)
[34] Hoop M.; Mushtaq, F.; Hurter C.; Chen, X. Z.; Nelson, B. J.; Pané S., A novel Multifunctional Nanodevice for Targeted Cancer Therapy. 2016 MRS Spring Meeting, Phoenix, 2016 (Oral)
[35] Hoop, M.; Chen, X. Z.; Yang, S.; Sakar, M. S.; Nelson, B. J.; Pané, S., Silver coated antibacterial magnetically manipulated helical nanoswimmers. eastForum: Progress in Functional and sustainable Surface technology, Lund, Sweden, 2015 (Oral).
[36] Mushtaq, F.; Guerrero, M.; Sakar, S.; Lindo, A. M.; Zeeshan, M. A.; Sort, J.; Chen, X. Z.; Nelson, B. J.; Pellicer, E.; Pané S., 3D template‐ assisted electrodeposition of hybrid magnetic microrobots for photocatalytic targeted water cleaning. eastForum: Progress in Functional and sustainable Surface technology, Lund, Sweden, 2015 (Oral).
[37] Özkale, B.; Shamsudhin, N.; Chatzipirpiridis, G.; Hoop, M.; Chen, X. Z.; Gramm, F.; Sort, J.; Nelson, B. J.; Pellicer, E.; Pané, S.; On-Demand Magnetically Triggered Drug Release with Segmented Nanowires. 2015 MRS Spring Meeting, San Francisco, 2015 (Oral)
[38] Pané, S.; Chatzipirpiridis, G.; Peters Christian; Shamsudhin, N.; Ergeneman O; Chen, X. Z.; Hierold C.; Nelson, B. J., Magnetic microrobots with programmed magnetic properties. 2015 MRS Spring Meeting, San Francisco, 2015 (Oral)
[39] Chen, X. Z.; Shamsudhin, N.; Hoop, M.; Pieters, R.; Siringil, E.; Sakar, M. S.; Nelson, B. J.; Pané, S., Magnetoelectric Microdevices. 11th International Workshop on Electrodeposited Nanostructures (EDNANO-11), Balatonfüred, Hungary, 2015, IV-1. (Oral)
[40] Jang, B.; Siegfried, R.; Chen X. Z.; Özkale, B.; Nelson, B. J.; Pané, S., Supported thick porous anodic alumina membrane on silicon. 11th International Workshop on Electrodeposited Nanostructures (EDNANO-11), Balatonfüred, Hungary, 2015. (Oral)
[41] Chen, X.; Tang, X.; Han, X.; Chen, X. Z.; Shen, Q. D., Ferroelectric Polymers for Organic Electronics Devices. 29th Annual Meeting of Chinese Chemical Society, Chengdu, China, 2012, 05-P-099 (Poster)
[42] Chen, X. Z.; Qian, X. S.; Li, X.; Lu, D. S. G.; Gu, H.; Lin, M.; Shen, Q.D.; Zhang Q. M., Enhanced Electrocaloric Effect in Poly (vinylidene fluoride-trifluoroethylene)-based Composites. 2012 MRS Fall Meeting, Boston, United States, 2012, B06 (Poster).
[43] Chen, X.; Chen, X. Z.; Shen, Q. D.; Guo, X.; Ge, H. X., High-Density Ferroelectric Polymer Film Arrays by Nanoimprint Technology. 28th Annual Meeting of Chinese Chemical Society, Chengdu, China, 2012, 05-P-078 (Poster)
[44] Liu, L.; Cheng, Z. X.; Chen, X. Z.; Shen, Q. D., Isothermal Crystallizationand Melting of VDF Based Ferroelectric Polymers for High-Energy-Density Capacitors. 28th Annual Meeting of Chinese Chemical Society, Chengdu, China, 2012, 05-P-099 (Poster)
[45] Cheng, Z. X.; Chen, X.; Chen, X. Z.; Shen, Q. D., Structure Evolution and Properties of Stretched and Nano-imprinted Ferroelectric Polymers. 28th Annual Meeting of Chinese Chemical Society, Chengdu, China, 2012, 07-O-002 (Oral)
[46] Chen, X. Z.; Chen, X.; Shen, Q. D.; Guo, X.; Xia, D. F.; Ge, H. X., Manipulating structures and properties of ferroelectric polymers through micro- and nano-fabrication. 2011 Annual Meeting of Polymer Division of Chinese Chemical Society, Dalian, China, 2011, C-O-13 (Oral)
[47] Cheng, Z. X.; Chen, X. Z.; Shen, Q. D., Structure Evolution and Properties of Stretched Relaxor Ferroelectric Polymers. 2011 Annual Meeting of Polymer Division of Chinese Chemical Society, Dalian, China, 2011, B-P-167 (Poster)
[48] Chen, X. Z.; Cheng, Z. X.; Shen, Q. D., Ferroelectric Polymers: Toward Organic Electronic Microdevices. 1st RSC-Unilever International symposium on Functional Materials Science, Shanghai, China, 2010 (Best Poster Award)
[49] Chen, X. Z.; Cheng, Z. X.; Shen, Q. D., Largely Enhanced Energy Density in Electroactive Polymers for Super-capacitor via Photo-crosslinking Method. 27th Annual Meeting of Chinese Chemical Society, Xiamen, China, 2010, 05-O-012 (Oral)
[50] Chen, X. Z.; Cheng, Z. X.; Shen, Q. D., Micro- and Nano-Fabrication and its influence of Electroactive Fluoropolymers. 7th National Conference on Functional Materials and applications, Changsha, China, 2010, RA6 (Oral)
[51] Chen, X. Z.; Tao, C.; Shen, Q. D., Pattern of Ferroelectric Polymer Film by Nanofabrication and Photo-crosslink. 2009 Annual Meeting of Polymer Division of Chinese Chemical Society, Tianjin, China, 2009, D-O-017 (Oral)
-
[1] Puigmartí-Luis, J.; Pellicer, E.; Jang, B.; Chatzipirpiridis, G.; Sevim, S.; Chen, X.-Z.; Nelson, B. J.; Pané, S., Magnetically and chemically propelled nanowire-based swimmers. In Magnetic Nano- and Microwires, Elsevier, 2020; pp 777-799. LINK
[2] Baraban, L.; Huang, T.; Chen, X.-Z.; Restrepo, R. S. H.; Mullol, J. I.; Puigmartí-Luis, J.; Pané, S., Curvilinear Magnetic Architectures for Biomedical Engineering. In Curvilinear Micromagnetism, Springer-Nature, 2022.
-
[1] Mushtaq, F.; Pané, S.; Chen, X. Z.; Nelson, B. J., A method for treating water containing pollutants, water cleaning reactors, and water cleaning assemblies, WO2020089672A1. LINK
-
国家自然科学基金 面上项目 主持(2025)
科技部重点研发计划 课题骨干 参与(2023)
国家级海外高层次引进人才 主持(2021)
上海市海外高层次引进人才 主持(2021)
瑞士国家科学基金会,Project Funding(69万瑞法,约合520万人民币),2023,共同主持(已退出)
瑞士国家科学基金会,Sino-Swiss 合作项目(35万瑞法,约合240万人民币), 2022,共同主持(已退出)
瑞士国家科学基金会,SPARK项目(10万瑞法,约合70万人民币), 2020,主持(已结题)
瑞士联邦理工学院,职业生涯种子基金(5万瑞法,约合35万人民币), 2016,主持(已结题)