• 所在单位:信息科学与工程学院
  • 学历:研究生毕业
  • 办公地点:江湾校区交叉二号楼C5029
  • 学位:博士学位
  • 职称:青年研究员
  • 在职信息:在职
  • 毕业院校:新加坡南洋理工大学
  • 博士生导师
  • 硕士生导师
Course
当前位置: 中文主页 >> Course

Image Processing ...

  • Image Processing and Machine Vision

    (2021,Spring)

    Introduction 丨Schedule 丨Extended

    Notice: Welcome  to the course of Image Processing and Machine Vision in the spring of 2021

    Lecture by: Tao Chen
    Office: C5029, Interdisciplinary Building Two, Jiangwan Campus, Fudan University
    Tel: 021-65643036
    Mail: 
    eetchen@fudan.edu.cn
    Teaching Assistant: Qi Fu,20210720095@fudan.edu.cn

    Information: 4 credits/64 class hours1-16 weeks

    Classroom:H2210
    - Monday 3–4(9:55–11:35)
    - Thursday 6–7 (13:30–15:10)

    Teaching objectives:
    This course  is to make the students understand the fundamentals of image processing and machine vision, and train them how to solve real-world problem using image processing tehniques. Further, students are expected to be able to implement basic image processing modules, including image transform, compression and feature extraction, etc.  In the learning process,  students will develop interests in image and vision research field, and be prepared for pursuing a higher degree.

    Courswork:
    •Attendence(10%)
    •Assignments(30%)
    •Quiz(Open-Book)(60%)

    Notes:

    1.Attendance and class performance: Students are assessed based on whether they are late for class, leave early, absent without reason, whether they prepare for class carefully, and whether they make loud noises in class. Students who are absent without reason for three times or who violate class rules will get 0 points.
    2.Presentation of course assignments:
    The assessment is mainly based on the students’ completion of major assignments and course reports. Specifically, the comprehensive assessment can be made according to the following situations:

    • The completion of the assignments;

    • Overall performance of course presentations;

    • Writing of course report .

    3.NO COPY

    Prerequisites:
    • Basic knowledge of Digital Signal Processing
    • C/Python/Matlab Basic Programming Skills

    Reference books:
    1.Gonzales,Woods,Digital image processing(The fourth edition),Electronic Industry Press,2020.
    2. Carsten Steger,Machine Vision Algorithms and Applications,Tsinghua University Press,2019.


Extended

Course Outlines

  • 复旦大学图像处理与机器视觉课程

    (2021年春季)

    课程简介 教学大纲 拓展学习


    课次 学时 主题

    主要内容

    课程ppt 作业






    1 4 数字图像的采集方式 课程课程准备,数字图像的采集方式以及特性讲解 PDF 安装Matlab等准备课程工作






    2 4 图像预处理 图像预处理方法如灰度化,去噪声 PDF






    3 4 图像增强 包括基于直方图的增强,彩色图像增强等 PDF






    4 4 图像变换 包括空域变换(几何变换)和频域变换(DFT、FFT、DCT) PDF 作业1






    5 4 图像压缩 包括有损压缩(哈夫曼编码)与无损压缩(预测编码)等 PDF 作业2






    6 4 图像分割 包括阈值分割法与区域分割法等 PDF 作业3






    7 4 图像分割 包括阈值分割法与区域分割法等 PDF 作业4






    8 4 图像的特征提取
    PDF 课程大作业part1






    9 4 用深度学习提取图像特征
    PDF 作业5






    10 4 图像分类
    PDF 作业6






    11 4 语义分割
    PDF 作业7






    12 4 实例分割
    PDF 作业8






    13 4 课程大作业part2








    14 4 课程大作业汇报








    15 4 课程大作业汇报








    16 4 答疑





    Tips:

    1.参考教材链接:数字图像处理(第三版)

    2.所有课程ppt提取码为fdu0